FORMER COMPUTER CIRCUITS SITE 145 MARCUS BOULEVARD, HAUPPAUGE, NEW YORK CERCLA-02-2000-2036

2017 ANNUAL SITE MANAGEMENT REPORT

SUBMITTED TO:

United States Environmental Protection Agency 290 Broadway New York, New York 10007

PREPARED FOR:

145 Marcus Boulevard, Inc. 445 Route 110 Melville, New York 11747

PREPARED BY:

P.W. Grosser Consulting, Inc. 630 Johnson Avenue, Suite 7 Bohemia, New York 11716 Phone: 631-589-6353 Fax: 631-589-8705

Kris Almskog, Vice President Thomas Melia, Sr. Project Manager

PWGC Project Number: MAR1701

Email: krisa@pwgrosser.com
Email: thomasm@pwgrosser.com

FORMER COMPUTER CIRCUITS SITE (CERCLA-02-2000-2036) 2017 ANNUAL SITE MANAGEMENT REPORT

CONT	ENTS		Page
1.0	SITE I	MANAGEMENT CERTIFICATION	1
2.0	INTR	ODUCTION	2
	2.1	Site Description	2
		2.1.1 Site Topography	
		2.1.2 Regional Geology/Hydrology	
		2.1.3 Site Geology/Hydrology	
	2.2	Site History	
	2.3	Summary of Previous Investigations and Enforcement Actions	
	2.4	Current Site Use	
3.0	חחר ו	RECORD OF DECISION SUMMARY OF ENVIRONMENTAL CONDITIONS	
3.0	3.1	Source Areas	
	3.2	Soil	
	3.3	Groundwater	
	3.4	Indoor Air	
	_		
4.0	_	MANAGEMENT	_
	4.1	Engineering Controls	
		4.1.1 SVE System Operation and Maintenance	
		4.1.2 System Performance Sampling	
		4.1.3 Mass Removal	
	4.2	Institutional Controls	
	4.3	Indoor Air Sampling	
		4.3.1 July 2015 Sampling Event	
		4.3.2 December 2015 Sampling Event	
		4.3.3 Indoor Air Data Trends	
	4.4	Groundwater Sampling	
	4.5	Data Validation	17
5.0	CON	CLUSIONS & RECOMMENDATIONS	19
6.0	REFE	RENCES	22

TABLES

APPENDIX D

APPENDIX E

Draft Institutional Controls

Data Validation Report

ITABLES	
TABLE 1	SVE System Milestones
TABLE 2	System Performance Sampling Analytical Data Summary
TABLE 3	Mass Removal Calculations
TABLE 4	Indoor Air Sample Analytical Data Summary (July 2015)
TABLE 5	Indoor Air Sample Analytical Data Summary (December 2015)
TABLE 6	Historical TCE Concentrations in Indoor Air
TABLE 7	Historical TCE Concentrations in Groundwater
FIGURES	
FIGURE 1	Vicinity Map
FIGURE 2	Site Plan
FIGURE 3	Indoor Air Sampling Locations
FIGURE 4	Groundwater Sample Locations
APPENDICES	
APPENDIX A	Correspondence
APPENDIX B	SVE System Monitoring Forms
APPENDIX C	Laboratory Analytical Reports

1.0 SITE MANAGEMENT CERTIFICATION

P.W. Grosser Consulting, Inc. (PWGC) certifies for the calendar year 2017, qualified environmental

professionals within the firm had primary direct responsibility for implementation of the remedial

program for the Former Computer Circuits Superfund Site (CERCLA-02-2000-2036).

PWGC certifies that the Interim Remedial Measure (IRM) dated July 2005 and Remedial Action Work Plan

(RAWP) dated May 2009, approved by USEPA on December 21, 2009, were implemented and that

requirements in those documents and addenda have been substantively complied with.

PWGC certifies that significant remedial activities, including operation of Soil Vapor Extraction (SVE)

Systems, were overseen by qualified environmental professionals, and that environmental samples,

including indoor air, SVE system influent, and groundwater, collected from the site were collected by

qualified environmental professionals in accordance with the procedures detailed in the IRM and/or

RAWP.

PWGC certifies that for the calendar year 2017:

• Existing on-Site Engineering Controls (ECs) are in-place and effective, and proposed Institutional

Controls (ICs) have been provided to USEPA for review.

• Existing remediation systems at the site are performing as designed.

• The ability of existing ECs and ICs to protect the public health and environment has not been

significantly impacted.

The operation and maintenance plan for existing ECs was implemented as detailed.

• Access is available to the Site by EPA to evaluate continued maintenance of existing ECs and ICs.

 \mathcal{L}

Thomas Melia Sr. Project Manager Kris Almskog

1

Vice President

Kus Shufly

2.0 INTRODUCTION

P.W. Grosser Consulting, Inc. (PWGC) has been contracted by 145 Marcus Boulevard, Inc. to prepare an

Annual Site Management Report for the former Computer Circuits Site, located at 145 Marcus Blvd,

Hauppauge, New York. The site was placed on the National Priorities List (NPL) effective May 10, 1999 and

assigned United States Environmental Protection Agency (EPA) Index No. CERCLA-02-2000-2036. This

Annual Site Management Report has been prepared in accordance with Section 12.2 of the approved

Remedial Action Work Plan (RAWP) (PWGC, May 2009). The RAWP was prepared as required by the

Administrative Order for Remedial Action for Computer Circuits Superfund Site (CERCLA-02-2009-2015)

(USEPA, April 1, 2009) and the Record of Decision (ROD) for Computer Circuits Superfund Site (EPA,

September 2008) to specify the ongoing and future activities necessary to implement the remedy selected

for the site. The RAWP was approved by EPA on December 21, 2009.

2.1 Site Description

The former Computer Circuits site is a 2.5-acre property located within an industrial park in Hauppauge,

New York (Figure 1). It is bordered by Marcus Boulevard to the west and other industrial/commercial

businesses to the north, south, and east. The site is occupied by a 21,600 square foot, one-story building,

which is located near the center of the site (Figure 2). Asphalt driveways and parking areas are present to

the north, south, and east of the building, and extend the length of the property. The paved areas and

building area occupy approximately 50 percent of the total area of the site. The remainder of the site

consists of a landscaped area (75 x 240 feet) at the front (west side) of the building, and a vacant, unpaved

area approximately 60 x 150 feet to the rear (east) of the building. A thin wooded strip is present

(approximately 10 to 15 feet wide) at the rear of the vacant area along the east property line. The

approximate building interior layout is illustrated in Figure 3.

There are no underground or aboveground storage tanks at the site. The heating system is fueled by

natural gas which is piped to the site via underground connections along the north side of the building.

Sanitary wastes are discharged to an on-site septic system located at the front (west side) of the building.

There are multiple storm drains (catch basins) present on the site located throughout the east parking lot.

2.1.1 Site Topography

The topographic relief at the site is generally flat with a gentle slope to the west toward Marcus Boulevard.

At the very rear of the site, along the east property line the land surface drops steeply approximately eight

feet to the neighboring property.

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT

2.1.2 Regional Geology/Hydrology

The former Computer Circuits site is underlain by glacial deposits, specifically the Ronkonkoma Terminal

Moraine, which consists of heterogeneous sand, gravel, and boulders with occasional silt and clay lenses.

Glacial deposits are approximately 150 feet in thickness and underlain by more than 1000 feet of

Cretaceous coastal plain sediments. The Smithtown Clay is seen one to two miles to the west of the site

at a depth within the glacial sediments of up to 100 feet (Lubke, 1964).

The uppermost of the Cretaceous formations is the Magothy, which consists of more than 600 feet of

highly stratified layers of sand, gravel, silt and clay that dip gently to the southeast. The Magothy

Formation is underlain by the Raritan Clay Member and the Lloyd Sand Member, respectively. These

formations are underlain by an erosional bedrock surface composed of granite, diorite, gneiss and schist

(Lubke, 1964).

The saturated highly permeable glacial sediments and the underlying Magothy Formation are regarded as

the upper aguifer (Lubke, 1964). Long Island is made up of a series of sand and gravel aguifers. All of Long

Island's water supply comes from underground water held in aquifers. Three major aquifers make up the

Long Island aguifer system. In sequence from shallowest to deepest, the major Long Island aguifers are:

the Upper Glacial, the Magothy and the Lloyd Aquifers. The Ronkonkoma Moraine area is a recharge area

in which groundwater flow has a downward component, which likely transports groundwater from the

glacial deposits to the Magothy formation. The site is situated some distance north of a regional

groundwater divide with groundwater flowing to the northeast, east and southeast. Located north of the

divide, groundwater in the vicinity of the site generally flows in an east-northeast direction toward the

headwaters of the Nissequogue River. The glacial water-table elevation may be slightly higher than the

potentiometric surface of the Magothy beneath the site (see Figure 12 RI Report December 2006 -

Regional Magothy Potentiometric Surface, March 1983); however, the water table elevation declines

more rapidly to the north and east, so that the vertical component becomes upward. Estimated hydraulic

conductivity for the glacial sediments in this area is 200 ft/day (McClymonds and Franke, 1972).

Site Geology/Hydrology 2.1.3

The former Computer Circuits site overlies an interconnected aguifer system consisting of the upper

glacial deposits and the underlying Magothy Formation. Depth to groundwater in the underlying glacial

aquifer is approximately 100 feet below land surface (bls). The saturated thickness of the Upper Glacial

Aguifer at the site is approximately 95-110 feet based on an estimated depth of 200 feet to the surface of

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT

the Magothy Aquifer. The lithologic description of the upper sediments from soil borings advanced during

previous investigations at the site identifies the materials as fine sand with small amounts of gravel to a

depth of 60 to 70 feet bls. The sand becomes coarser with depth, grading into a medium sand from 70 to

100 feet bls followed by a medium to coarse sand from the water table to a depth of approximately 130

feet bls. From 130 feet to 200 feet bls the material then returns to a fine to medium sand.

According to previous investigations performed at the site, including the Remedial

Investigation/Feasibility Study (RI/FS) documented by The Remedial Investigation Report for the Former

Computer Circuits Site (PWGC, December 2006) and The Feasibility Study for the Former Computer

Circuits Site (PWGC, June 2007), groundwater flow is generally northeast to east at an average gradient

of 0.001 ft/ft, with some localized variations. The horizontal hydraulic conductivity across the site, as

determined from rising head tests performed in the site monitoring wells, ranged from 51 to 177 ft/day

with a mean value of 130 ft/day. Using the average water table gradient of 0.001 and a porosity of 25

percent, the groundwater seepage velocity of the site ranges from 0.23 to 0.78 feet per day with a mean

of 0.57 feet per day.

There are no surface water bodies near the site. Artificial recharge basins are located throughout the

industrial park to accept storm water run-off from roadside catch basins. Since the depth to groundwater

in the area is approximately 100 feet below surface, the water table surface does not intersect the bottom

of these structures.

2.2 Site History

From 1969 to 1991, the property was owned by MCS Realty and leased to various companies. Computer

Circuits was the first tenant and occupied the entire property from 1969 to 1977. From 1977 to 1980 the

site was leased to a trade school. NAV-TEC, an assembler of electronic components, occupied the site

from 1980 to 1983, followed by a tax form preparation company (TYMSHARE) from 1983 to 1989. In July

of 1991, MCS Realty sold the property to 145 Marcus Boulevard Corporation. The site was most recently

occupied by Algorex Power and Control Electronics, Incorporated (APACE), an electronics manufacturing

and design company specializing in power and motion control products. APACE vacated the property in

April, 2002 and the property remained vacant until the Fall of 2005, at which time the southwest corner

of the building was occupied by Castle Financial Advisors. Current site usage is detailed in Section 2.4.

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT

Computer Circuits was a manufacturer of printed circuit boards for both military and commercial

applications. Waste liquids from the circuit board manufacturing process (containing copper sulfate,

nickel, sulfuric acid, hydrochloric acid, lead fluoroborate, fluorides, copper, gold cyanate, ammonia, lead,

nitric acid, and tin) were discharged to five industrial leaching pools located southeast of the building.

Photographic chemicals and trichloroethylene, associated with a dark room and the silk screening room

located in the northern part of the facility, were discharged to a single industrial leaching pool on the

north side of the building. In January of 1973, a pipe connection was discovered between the Computer

Circuits industrial leaching pools on the south side of the building and a catch basin on Marcus Boulevard

by the Suffolk County Department of Environmental Control (SCDEC). After the connection was removed

in 1974, wastewater was observed flowing over the surface of the ground into the storm drain system. In

1975, Computer Circuits applied for and was issued a State Pollution Discharge Elimination (SPDES) Permit

(No. 0075485) from the New York State Department of Environmental Conservation (NYSDEC). The

permit, which was effective from April of 1975 to April of 1977, regulated the discharge of copper, iron,

lead, nickel, silver and phenol to the industrial leach pool system.

On numerous occasions between 1976 and 1977, the SCDEC collected samples from the industrial

leaching pools and found that copper and lead were consistently detected at levels above the SPDES

permit limits. An inspection conducted in 1976 revealed that the site was littered with trash, broken

barrels, and spilled piles of chemicals and blue/green colored sludge.

In 1976, in response to requests by the SCDEC, Computer Circuits hired a contractor who excavated and

filled the five industrial leaching pools located near the southeast corner of the building and installed two

new leaching pools in this general area, which were also intended for industrial waste disposal. In 1977,

the SCDEC traced the building's plumbing to identify connections to two leaching pools located on the

north side of the building. It was determined by the SCDEC that one of the pools was part of a sanitary

system that was connected to an unused bathroom. The second pool was connected to sinks which were

located in a silk screen fabrication room and a photographic dark room. The silk screening process utilized

trichloroethylene (TCE) to remove ink from the screens prior to rinsing with water in the sink. The

industrial leaching pool was reported to be completely "clogged" and was capped inside the building

sometime between 1977 and 1978 (SCDEC). Computer Circuits vacated the premises in 1978.

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT

2.3 Summary of Previous Investigations and Enforcement Actions

The following is a brief chronological summary of the sampling/analytical programs and remedial actions

conducted at the former Computer Circuits site, as well the regulatory activities that enforced these

actions. The locations of the monitoring wells referenced in this section are illustrated in Figure 4.

Suffolk County Department of Health Services, Water Pollution Control Unit (formerly SCDEC), 1976 and

1977

SCDEC sampled the five on-site industrial leaching pools and found exceedances for copper and lead.

Additional actions during this period are discussed the preceding section.

NYSDEC, 1977

The NYSDEC obtained an injunction against Computer Circuits and all site operations ceased. Computer

Circuits later vacated the site.

NYSDEC, December, 1986

The NYSDEC placed the site on the New York Registry of Inactive Hazardous Waste Disposal Sites under a

Class 2 classification, meaning that the site posed a significant threat to the public health or the

environment and that further action will be required.

Roux Associates, Inc., May 3, 1989

Roux Associates, under contract to the former property owner (MCS Realty), conducted a soil and

groundwater investigation at the site, as required by the NYSDEC under an Order on Consent (Number

W10061885) between the NYSDEC and the former property owner, MCS Realty. A magnetometer survey

was conducted. Ten soil borings were drilled at various locations throughout the site, including west of

the building, near the industrial leaching pools at the southeast and northwest corners of the building.

Three monitoring wells, MW1, MW2 and MW3 were installed and sampled. Volatile organic compounds

(VOCs) were not detected in the soil above NYSDEC guidance values. Groundwater analysis from the

monitoring wells indicated VOCs, including trichloroethene (TCE), 1,2-dichloroethene (1,2-DCE) and 1,1,1-

trichloroethane (1,1,1-TCA) present above NYSDEC standards and metals including cadmium, chromium,

copper, lead, nickel and zinc present at concentrations below NYSDEC standards. No significant anomalies

were detected during the magnetometer survey.

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT

PWGC, May 1994

PWGC, as consultant for the new property owner (145 Marcus Boulevard Corporation), investigated a

sinkhole at the site, located southeast of the corner of the building. Construction debris and a barrel

containing a nickel solution were discovered in the sinkhole area. This material was excavated, stockpiled,

and removed from the site in November 1995.

PWGC, September through November 1995

PWGC, as consultant for the property owner conducted a soil quality investigation. Five soil borings were

drilled, one near the main sanitary cesspool system west of the building, one at the industrial leaching

pool located on the north side of the building, and three around the former location of the industrial

leaching pools south of the building. Groundwater samples were also collected from the three existing

monitoring wells at this time. VOCs were not detected in the soil samples above NYSDEC standards. Metals

including lead, silver, copper, nickel and zinc were detected in the soil samples above the NYSDEC

standards. Groundwater samples indicated the presence of VOCs, including TCE, 1,2-DCE and 1,1,1-TCA

and tetrachloroethene (PCE) above NYSDEC standards. Metals including zinc were detected slightly above

the NYSDEC ambient water quality standards (AWQS). Additional stained soil was also removed from the

sinkhole area and the remains of a leaching pool, believed to be one of the two industrial replacement

pools, were discovered.

Parsons Engineering, February 1996

Parsons Engineering, under contract to NYSDEC, conducted a soil vapor survey at the site. The samples

were analyzed, using a mobile laboratory, for TCE, 1,1,1-TCA, and 1,2-dichloroethane (1,2-DCA). Elevated

levels (>10,000 ppb) of TCE were detected in soil vapor in the immediate vicinity of the industry pool on

the north side of the building and adjacent to the discharge line which connects the pool where it exits

the building. Elevated levels of TCE and 1,1,1-TCA were detected in a soil vapor probe located along the

east side of the building, just north of the exterior door.

Malcolm Pirnie, Inc., March through May 1996

Under contract to the USEPA, Malcolm Pirnie conducted a Hazard Ranking System sampling investigation

of the site. Fourteen subsurface soil samples were collected from the industrial leaching pool areas, the

sinkhole area, and background locations on the property. Metals including copper and nickel were

detected above NYSDEC guidance values in the soil samples. VOCs were not detected above NYSDEC

7

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT guidance values. In addition, three monitoring wells MW4, MW5 and MW6 were installed at the site. In

May, groundwater samples were collected from the three new wells and two of the previously existing

wells (MW2, MW3). VOCs including TCE, 1,1,1-TCA, PCE and 1,2-DCE were detected above NYSDEC

standards in each of the wells. Analysis for metals detected zinc above NYSDEC standards in MW2.

USEPA, May 10, 1999

The EPA placed the former Computer Circuits site on CERCLA's National Priorities List (NPL) of sites. USEPA

took over as the lead regulatory agency at the site and provided oversight for the implementation of an

RI/FS.

PWGC, September 2000 through January 2003

On September 29, 2000, 145 Marcus Boulevard Corporation voluntarily entered into an administrative

order on consent to conduct an RI/FS to determine the nature and extent of contamination at the site.

PWGC performed the RI field work from December 17, 2001 through July 24, 2002. RI field activities

included a geophysical survey of the site, excavation of test pits and collection and analysis of soil,

groundwater and air samples. The draft Remedial Investigation Report was submitted to USEPA on

January 3, 2003. It identified TCE at levels of concern in indoor air in the onsite building, in soils just

beneath the slab of the northern portion of the building, and in soils within the leaching pool adjacent to

the north side of the building.

PWGC, September 28, 2004 through December 15, 2005

Based on the presence of TCE in air samples collected from the building, an Order of Consent was signed

on September 28, 2004 that provided for the performance of a removal action by 145 Marcus Boulevard

Corporation. The Order called for the construction and operation of both a soil vapor extraction (SVE)

system and sub-slab depressurization system at the site. PWGC completed construction of the system on

December 15, 2005, which included a single vertical extraction well installed within the contaminated

zone of the north industrial leaching pool, and a single horizontal extraction well installed beneath the

concrete slab of the former silk screening room. Both extraction wells are remediating impacted soils

through mass transfer from the sorbed to the vapor phase. The horizontal well installed beneath the

building serves as an abatement function system to remove accumulated vapors beneath the slab and

prevent them from migrating to the building's interior. The system has been in continuous operation

since.

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT

EPA, February 2008 through November 2008

The EPA performed a soil vapor intrusion sampling study of the onsite building in 2008. From February 26

to 28, 2008, 30 sub-slab gas wells were installed in the building. An additional sub-slab soil gas well was

installed on March 18 and 19, 2008 and samples were collected from each of the 31 sub-slab gas wells.

Additional sub-slab gas samples and indoor air samples were collected on May 12 and 13, 2008 and again

on September 22 and 23, 2008. TCE was detected in indoor air samples at concentrations slightly

exceeding the indoor air cleanup levels specified in the 2004 Order on Consent. PCE and trans-1,2-

Dochloroethene were also detected in indoor air samples. TCE was detected at levels of concern in sub-

slab samples. PCE, trans-1,2-Dichloroethene, 1,1,1-TCA and cis-1,2-Dichloroethene were also detected in

sub-slab samples. The results of this study are documented by a November 21, 2008 letter report prepared

by Lockheed Martin Technology Services, Environmental Services/REAC for the EPA.

In addition to the soil vapor investigation, EPA installed six additional monitoring wells (three well

couplets, each with a shallow and deep well). Groundwater samples were collected from each of these

new wells, along with the existing on and off site wells in May 2008. TCE was detected at elevated

concentrations in up gradient monitoring well ERT MW-12S, onsite monitoring well MW-1, and off site,

down gradient monitoring wells MW-8, MW-9, ERT MW-13S, and ERT MW-14S. TCE detections were

primarily off site, and along the northern site boundary.

EPA, September 2008 through April 2009

The EPA conducted activities in response to the findings of the soil vapor intrusion sampling study,

including the optimization of the existing SVE system on the north side of the onsite building and the

installation of a second SVE system on the south side of the site. On September 30, 2008, the EPA issued

a Record of Decision (ROD) documenting the selected remedy for the site. An Administrative Order on

Consent (Index No. CERCLA 02-2009-2015) was signed by the EPA on March 31, 2009, the terms of which

were later agreed upon by the 145 Marcus Boulevard Corporation. The Order addressed the selected

remedy specified by the ROD.

PWGC, May 2009

In accordance with the AOC for Remedial Action and ROD, PWGC prepared a draft Remedial Action Work

Plan (RAWP) for the site which included: an Operation and Maintenance Manual for the SVE systems, a

Site Management Plan, a Monitoring Plan (for performing monitoring of groundwater, indoor air, sub-slab

vapor, and the SVE systems), a Quality Assurance Plan, a Health and Safety Plan, and reporting

9

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT requirements. The RAWP specified ongoing and future activities necessary to implement the remedy

selected for the site. The draft RAWP was submitted to EPA for review on May 29, 2009.

EPA, December 2009

EPA approved the draft RAWP for the site without significant comments on December 21, 2009.

EPA, August 2011

EPA modified the approved RAWP to decrease the groundwater sampling frequency at the site from semi-

annual to annual. A copy of the email confirming the modification is included in Appendix A.

EPA, June 2015

EPA modified the approved RAWP to reduce the number of indoor air samples required during each semi-

annual indoor air sampling event, and eliminate annual groundwater sampling at the site. A copy of the

email confirming the modification is included in Appendix A.

2.4 Current Site Use

The former Computer Circuits site is used for commercial and industrial purposes. The

commercial/industrial zoning for the site is not expected to change in the near future. As of December

2017, the building is occupied as follows:

• The northwest portion of the building is occupied by Castle Financial Advisors, LLC, a financial

services company employing approximately 12 persons.

The southeastern portion of the building is occupied by Goldson, Nolan, Connolly, Nasis &

Dornfeld LLP (GNC), a law firm employing approximately 12 to 15 persons.

The northeastern portion of the building is occupied by Lambda, Inc., an electronics manufacturer

employing approximately 20 persons. Lambda's space is used as executive offices and for product

testing, no manufacturing is done on-site.

The southwest portion of the building is occupied by the corporate offices of Lacrosse Unlimited,

an athletic equipment and apparel retailer employing approximately 12 to 15 persons.

No significant changes to the building layout have occurred since 2009.

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT 3.0 PRE-RECORD OF DECISION SUMMARY OF ENVIRONMENTAL CONDITIONS

The following summary of environmental conditions is based on the findings of previous environmental

investigations performed at the former Computer Circuits site.

3.1 Source Areas

The contaminant source areas at the site consisted of industrial cesspools used for wastewater from

operations at the Computer Circuits facility. Cesspools were located both beyond the southeast corner

and on the north side of the site building. Previous investigations identified these areas as contributing to

contamination in the underlying aquifer. The primary contaminants identified in source areas include 1,1-

dichloroethene, 1,1,1-trichloroethane, 1,2-dichloroethane, acetone, chloromethane, methylene chloride,

TCE, PCE and vinyl chloride. Recent groundwater data suggests that consistent contamination source

areas are no longer present at the site.

3.2 Soil

Shallow borings collected between 2000 and 2003 revealed concentrations of TCE exceeding the NYSDEC

Unrestricted Use Recommended Soil Cleanup Objective (RSCO) of 470 ug/kg in the vicinity of the industrial

leaching pool on the north side of the building, as well as beneath the concrete slab floor in the former

silk screening room. The highest reported TCE concentration in a shallow boring was 12,000 ug/kg,

detected in 2001 from a soil sample collected in the top two feet below the concrete slab in the northern

portion of the building. Samples collected in 2002 from deep soil borings also revealed concentrations of

TCE exceeding the NYSDEC RSCO at the base of the former industrial leaching pool on the north side of

the building and in the vicinity of the leaching pools off of the southeast corner of the building. A TCE

concentration of 55,000 ug/kg was detected in a 2002 sample collected 22 feet bls, at the base of the

former leaching pool on the north side of the building.

Previous investigations conducted in 1995 also identified concentrations of metals (primarily nickel and

copper) at the base depth (8-22 ft) of the primary industrial leaching pools near the southeast corner of

the building. The maximum detected concentration of copper was 12,300 mg/kg. The NYSDEC

Unrestricted Use RSCO for copper is 50 mg/kg. Nickel was detected above the NYSDEC Unrestricted Use

RSCO in only one subsurface soil sample. The deposit of metals was limited to the immediate area

occupied by the former pools near the southeast corner of the building and was clearly related to the

discharge of industrial wastes to the on-site drainage system.

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT

The industrial leaching pool located on the north side of the building also contained concentrations of metals, primarily nickel and silver. Most of the detections were in the upper 5 to 7 feet of soil, however silver was detected at a concentration of 168 mg/kg in a soil sample collected 20 feet bls. The NYSDEC Unrestricted Use RSCO for silver is 2 mg/kg.

3.3 Groundwater

The primary contaminants identified in groundwater beneath the former Computer Circuits were TCE and PCE. During the 2002 RI, both of these contaminants were detected above their respective New York State Ambient Water Quality Standards (AWQS) and EPA Maximum Contaminant Levels (MCLs) at concentrations of 280 ppb and 270 ppb, respectively. Monitoring data collected in recent years indicated that PCE and TCE concentrations have continued to decrease significantly to concentrations below NYSDEC AWQS in wells located within site boundaries, as well as in wells located both up gradient and downgradient of the site. Data collected in 2013 indicate that TCE concentrations did not exceed the MCL value. The sole detection of PCE at a concentration exceeding its AWQS of 5 ppb was from the sample collected from monitoring well ERT MW-12S, which is located up gradient of the subject property with respect to groundwater flow. Additionally, PCE was reportedly never used at the site and only trace amounts of PCE were detected in site soils, providing further evidence that the presence of PCE is predominantly related to a source or sources up gradient to the site.

3.4 Indoor Air

Air samples collected inside the site building on July 24, 2002 yielded detections of 1,1-dichlorothene, 1,1,1-trichloroethane, 1,2-dichloroethane, acetone, chloromethane, methylene chloride, TCE, and vinyl chloride. As a result of these findings, a SVE system was installed to remediate contaminated soils in the contaminant-source area on the north side of the building and to mitigate vapor intrusion into the building. Only two VOCs were detected during a July, 2008 sampling event, namely, TCE and trans-1,2-dichlorothene. The highest detected concentrations of TCE and trans-1,2-dichlorothene were 6.07 ug/m3 and 0.381 ug/m3, respectively. Soil-gas samples collected around the perimeter of the building and beneath the building slab yielded maximum TCE and PCE concentrations of 80,613 ug/m3 and 8,815 ug/m3, respectively. As discussed in Section 1.3, additional corrective actions were taken after the May, 2008 sampling event, including the installation of a second SVE system on the south side of the site building.

4.0 SITE MANAGEMENT

4.1 Engineering Controls

There are currently two soil vapor extraction (SVE) systems (North SVE System and South SVE System)

operating at the site. SVE is a remedial technology that reduces concentrations of VOCs adsorbed to soils

in the unsaturated zone by evaporating the volatiles and drawing the resulting vapor towards extraction

wells. The vapors are then removed through extraction wells by applying a vacuum, and vapors are then

passed through granulated activated carbon (GAC) drums prior to being exhausted to the atmosphere.

Significant milestones and outages for both SVE systems are documented in Table 1. Additional

information regarding the North and South SVE systems is detailed in the Operation and Maintenance

(O&M) Manual for the site (Appendix A of the RAWP).

4.1.1 SVE System Operation and Maintenance

Both the North and South SVE systems operated continuously throughout 2017. To reduce VOC

concentrations in indoor air at the site, the North SVE System has been drawing solely from the horizontal

extraction well installed beneath the northern portion of the building since September 2008, and the

South SVE System has been drawing solely from the horizontal extraction wells beneath the southwestern

portion of the building since June 2015.

Prior to approval of the RAWP (approved December 21st, 2009), EPA was responsible for operation and

maintenance of the South SVE System. PWGC began operation and maintenance of the South SVE system

upon approval of the RAWP.

PWGC conducts routine operation, monitoring and maintenance (OM&M) visits to assess the operation

of the SVE systems on a monthly basis. OM&M visits consist of assessing the system's current condition,

documenting gauge readings, taking system air stream readings with a handheld photo-ionization

detector (PID) and, when scheduled collecting system air samples for laboratory analysis. System

parameters such as flow rates and gauge readings are documented on SVE system monitoring forms,

included as Appendix B. No significant maintenance or repairs were necessary for either SVE system

during 2017.

4.1.2 System Performance Sampling

During 2017, PWGC collected system performance samples from the North SVE and South SVE systems in

July and December. System performance samples were collected from the combined system influent lines.

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT

Samples are collected using SUMMA vacuum canisters in accordance with EPA/REAC SOP# 1704 Summa

Canister Sampling, EPA/REAC SOP# 2008 General Air Sampling Guidelines, and the approved RAWP.

Canisters were transported under proper chain of custody procedures to Alpha Analytical of

Westborough, Massachusetts, a New York State Department of Health (NYSDOH) Environmental

Laboratory Approval Program (ELAP) certified laboratory (ELAP ID: 11148) for analysis by EPA method TO-

15 for VOCs. System performance sampling analytical data for contaminants of concern are summarized

in Table 2; copies of the laboratory analytical reports are included in Appendix C.

4.1.3 Mass Removal

Analytical data from SVE system influent air samples and SVE system air flow rates are used to calculate

actual mass removal rates. Mass removal rates for the SVE systems are summarized in **Table 3**. Based on

mass removal calculations, through December 2017, the North SVE system has removed approximately

15.75 pounds of total VOCs; the South SVE system has removed approximately 4.35 pounds of total VOCs.

4.2 Institutional Controls

Institutional controls are intended to protect human health from exposure to existing contamination

while remediation is ongoing. Institutional controls may include environmental easements/restrictive

covenants that limit the use of the site to commercial or industrial, restrict new construction at the site,

and restrict the use of groundwater at the site.

A draft institutional control consisting of a Declaration of Covenants and Restrictions for the property was

submitted to USEPA for review in February 2010. To date USEPA has not approved the draft Declaration

of Covenants and Restrictions. A copy of the draft institutional control is included as **Appendix D**.

4.3 Indoor Air Sampling

In July and December 2017, PWCG collected indoor air samples at locations specified in the RAWP, as

modified by EPA (see RAWP modification email included in Appendix A). Current and historic indoor air

sample locations are illustrated in Figure 3. Indoor air samples were collected to assess potential work

place exposure while the building is occupied, and to support a decision to terminate operation of the SVE

system as described in the AOC.

Indoor air samples were collected using SUMMA vacuum canisters in accordance with the procedures

outlined in EPA SOP# 1704 SUMMA Canister Sampling, NYSDOH Guidance for Evaluating Soil Vapor

Intrusion in the State of New York (2006), and the approved RAWP. Samples were collected over an eight

14

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT hour period between the hours of 9 AM and 5 PM in an effort to gather samples representative of

conditions encountered by the office workers. Since the building does not have a subsurface basement or

multiple stories, air quality samples were collected from the main floor within the breathing zone (3 to 5

feet above the floor). The office ventilation system was left on during sampling events.

Canisters were transported under proper chain of custody procedures to Alpha Analytical of

Westborough, Massachusetts, a NYSDOH ELAP certified laboratory (ELAP ID: 11148) for analysis by EPA

method TO-15 for VOCs. Analysis of the air samples was in accordance with EPA 625R-96 "Compendium

of Methods for the Determination of Organic Compounds in Ambient Air", TO15. Analytical data are

compared to the site specific target concentration for TCE in indoor air as specified in the ROD for the site.

July 2017 Sampling Event 4.3.1

TCE was detected at concentrations exceeding its site specific target concentration of 0.36µg/m³ in

samples IA-3 and IA-8. TCE concentrations in indoor air ranged from non-detect (multiple samples) to

0.613 µg/m³ (IA-3). The highest TCE concentrations detected within the building were in samples collected

from within the southeastern portion of the building (IA-3 and IA-8). TCE concentrations detected during

the July 2017 sampling event did not exceed the NYSDOH Air Guideline value of 2 μg/m³ for TCE.

Analytical data for contaminants of concern are summarized in **Table 4**; copies of laboratory analytical

reports are included in Appendix C.

December 2017 Sampling Event 4.3.2

TCE was detected at concentrations exceeding its site specific target concentration of 0.36 µg/m³ in

samples IA-3, IA-5, IA-8. TCE concentrations in indoor air ranged from 0.317 μg/m³ (IA-4) to 0.795 μg/m³

(IA-8). The highest TCE concentrations detected within the building were in samples collected from within

the southeastern portion of the building (IA-3 and IA-8). TCE concentrations detected during the

December 2017 sampling event did not exceed the NYSDOH Air Guideline value of 2 μg/m³ for TCE.

Analytical data for contaminants of concern are summarized in Table 5; copies of laboratory analytical

reports are included in **Appendix C**.

4.3.3 **Indoor Air Data Trends**

Historical indoor air data for TCE are summarized in Table 6. In general, TCE concentrations have

decreased significantly since indoor air monitoring began in 2005.

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT

Northern Office Suites

Sample locations IA-1, IA-2 and IA-4 are located within the northern office suites. TCE data for location IA-

2 is available for sampling events beginning in February 2005 (IA-2 corresponds approximately to IRM

sample location AS-2); TCE data for locations IA-1 and IA-4 is available for sampling events beginning in

December 2009.

Historically, TCE concentrations at sample locations within the northern portion of the building have been

measured as high as 33 μg/m³ (IA-2, February 2005). Following startup of the North SVE system in

December 2005, TCE concentrations within the northern office suites decreased significantly. Since

startup of the North SVE system the highest TCE concentration detected in the northern office suites is

9.7 µg/m³ (IA-2, March 2006). TCE concentrations have been below the EPA's site specific target

concentration of 0.36 µg/m³ in the northern office suites since the December 2010 sampling event. TCE was not detected in samples IA-2 and IA-4 during July 2017 sampling event. TCE was detected in both

samples during the December 2017 but at concentrations below the site specific target of 0.36 µg/m³.

Southern Office Suites

Sample location IA-5 is located within the southwestern office suite; sample locations IA-3, IA-6, IA-7 and

IA-8 are located within the southeastern office suite. TCE data for locations IA-3 and IA-5 is available for

sampling events beginning in February 2005 (IA-3 and IA-5 correspond approximately to IRM sample

locations AS-3 and AS-1, respectively); TCE data for locations IA-6, IA-7 and IA-8 is available for sampling

events beginning in December 2009.

TCE has been historically detected at concentrations as high as 17 μg/m³ in the southwestern office suite

(location IA-5, February 2005). TCE concentrations in this area decreased significantly upon startup of the

North SVE system. TCE concentrations from immediately prior to the startup of the South SVE system are

not available for this portion of the building (no sampling was performed in this suite from September

2006 through September 2009). With the exception of the July 2014, July 2015, and December 2017

sampling events, TCE concentrations in this area have been below the EPA's site specific target

concentration of 0.36 µg/m³ since implementation of regular periodic sampling in this area began in

September 2009.

Historic TCE concentration in the southeastern office suite have been measured as high as 26.87 μg/m³

(IA-3, September 2006). In general, TCE concentrations in this area decreased significantly upon startup

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT

of the North SVE system, with the exception of the high concentration detected at location IA-3 in September 2006. TCE concentrations from immediately prior to the startup of the South SVE system are not available for this portion of the building (no sampling was performed in this suite from September 2006 through September 2009). Since startup of the South SVE system, TCE concentrations in the southeastern portion of the building have remained relatively constant, fluctuating between $0.805 \, \mu g/m^3$ and $2.16 \, \mu g/m^3$, until the December 2015 sampling event during which TCE concentrations were below $0.500 \, \mu g/m^3$ in this area. The decrease in concentrations observed during the December 2015 sampling event were likely related to the modification of the South SVE System to draw solely from the sub-slab extraction wells (see Section 4.1). Samples collected at locations IA-3 and IA-8 in 2017 remained within the range of TCE concentrations observed in the southeastern portion of the building over the past several years.

4.4 Groundwater Sampling

Historically, TCE impact in groundwater at the site has significantly decreased since monitoring began in 2002. TCE has not been detected at a concentration exceeding its NYSDEC AWQS of 5 ppb in groundwater at the site since the June 2010 sampling event. Based on the lack of groundwater impact identified at the site since 2010, EPA eliminated the requirement for routine groundwater sampling at the site in 2015 (see RAWP modification email included in **Appendix A**). The site's monitoring well network remains in place to allow for future groundwater sampling, if necessary. Historical groundwater sample data are included in **Table 7**; monitoring well locations are illustrated in **Figure 4**.

4.5 Data Validation

Independent data validation was performed by Laboratory Data Consultants (LDC) of Carlsbad, California. Data validation was performed on 100% of the sample data. To the extent possible, LDC's validation was performed in conformance with Tier III guidelines as defined by EPA Region I, "Region I EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses", dated March 1996. The data were evaluated in accordance with EPA Region II's Standard Operating Procedures (SOPs) from the EPA Hazardous Waste Support Branch: SOP#HW31 "Validating Air Samples Volatile Organic Analysis of Ambient Air in Canister by Method TO-15. "EPA's "National Functional Guidelines for Organic Data Review" (EPA 540/R-99/008, October 1999) were also considered during the evaluation, and professional judgment was applied as necessary and appropriate.

Based on the validation effort, results for the VOCs in indoor air and soil vapor samples were determined

to be usable as reported with minor qualification due to sample matrix and laboratory quality control

outliers.

The completeness level attained for the analysis of the field samples was greater than 99%. The overall

quality of the data was acceptable and all results as qualified are considered usable.

A copy of the Data Usability Summary Report is included as **Appendix E**.

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT

5.0 CONCLUSIONS & RECOMMENDATIONS

PWGC has prepared this Annual Site Management Report in accordance with Section 12.2 of the approved RAWP for the site. Based on the information presented above, PWGC offers the following conclusions:

- Engineering controls at the site consist of two SVE systems (North SVE system and South SVE system).
- Draft institutional controls have been submitted to USEPA for review and comment.
- Engineering Controls (i.e., North and South SVE systems) at the site have been operating as designed and effectively removing VOCs from the subsurface of the site.
- Existing engineering controls at the site continue to be effective. Neither the North SVE system
 nor the South SVE system experienced significant down time during the period covered by this
 report. As of December 31, 2017, both the North and South SVE systems appear to be functioning
 as designed.
- PWGC certifies (see Site Management Certification, Section 1.0) that existing engineering controls
 at the site are in place, and performing as designed. The ability of existing engineering controls to
 protect the public health and environment has not been significantly impacted, and the operation
 and maintenance plan for existing engineering controls was implemented as detailed.
- Periodic site inspections were performed in accordance with Section 8.3 of the approved RAWP.
 Periodic operation and maintenance inspections are detailed in Section 3.1.1; inspection forms are included as Appendix B.
- Performance of treatment systems at the site is summarized in Section 3.1.3. Based on calculated mass removal rates:
 - The North SVE system removed approximately 0.25 pounds of total VOCs from the subsurface of the site during 2017 and a total of approximately 15.75 pounds of total VOCs since system start up in 2005.
 - The South SVE system removed approximately 0.91 pounds of total VOCs from the subsurface of the site during 2017 and a total of approximately 4.35 pounds of total VOCs since PWGC took control of the system in December 2009.
- Data for indoor air samples collected during 2017 are summarized in **Table 4** and **Table 5**. Sample locations are illustrated in **Figure 2**. Indoor air samples were collected from within the building in July and December 2017. During each sampling event, five indoor air samples were collected from throughout the building as specified in the RAWP. During the July 2017 sampling event, TCE concentrations in indoor air ranged from non-detect (multiple samples) to 0.613 μg/m³ (IA-3). During the December 2017 sampling event, TCE concentrations in indoor air ranged from 0.317

- $\mu g/m^3$ (IA-4) to 0.795 $\mu g/m^3$ (IA-8).During both sampling events, the highest TCE concentrations were detected in samples collected from within the southern portion of the building. TCE concentrations exceeding the NYSDOH AGV of 5 $\mu g/m^3$ for TCE were not detected in indoor air samples collected during the July and December 2017 sampling events.
- Historical indoor air concentrations for TCE are summarized in Table 6. In general, TCE concentrations have decreased significantly inside the building since monitoring began in February 2005. TCE concentrations in the northern office suites have been below the EPA's site specific target concentration of 0.36 µg/m³ since December 2010. TCE concentrations in the southern office suites have decreased over time, however, concentrations in this area continue to exceed the EPA's site specific target concentration of 0.36 µg/m³. TCE concentrations in this area have generally ranged from 0.805 μg/m³ and 2.16 μg/m³ over the past several sampling events. However, during the December 2015 sampling event, TCE concentrations had decreased to a maximum of 0.500 µg/m³ in this area. The decrease in concentrations observed during the December 2015 sampling event were likely related to the modification of the South SVE System to draw solely from the sub-slab extraction wells (see Section 4.1). Samples collected at locations IA-3 and IA-8 in 2017 remained within the range of TCE concentrations observed in the southeastern portion of the building over the past several years. Based on the lack of groundwater impact identified at the site since 2010, EPA eliminated the requirement for routine groundwater sampling at the site in 2015. The site's monitoring well network remains in place to allow for future groundwater sampling, if necessary. Historical groundwater sample data are included in **Table 7**; monitoring well locations are illustrated in **Figure 4**.
- Laboratory analytical reports are included as Appendix C.
- Independent data validation was performed by Laboratory Data Consultants (LDC) of Carlsbad, California. Data validation was performed on 100% of the sample data. To the extent possible, LDC's validation was performed in conformance with Tier III guidelines as defined by EPA Region I, "Region I EPA-NE Data Validation Functional Guidelines for Evaluating Environmental Analyses", dated March 1996. The data were evaluated in accordance with EPA Region II's Standard Operating Procedures (SOPs) from the EPA Hazardous Waste Support Branch: SOP#HW-24 "SOP for the Validation of Organic Data Acquired Using SW-846 Method 8260" (Rev. 2, December 1996) and SOP#HW31 "Validating Air Samples Volatile Organic Analysis of Ambient Air in Canister by Method TO-15.

Based on the validation effort, results for the VOCs in indoor air and soil vapor samples were

determined to usable as reported with minor qualification due to sample matrix and laboratory

quality control outliers. The completeness level attained for the analysis of the field samples was

greater than 99%. The overall quality of the data was acceptable and all results as qualified are

considered usable. A copy of the Data Usability Summary Report is included as Appendix E.

Based on the conclusions detailed above, PWGC recommends that implementation of the

approved RAWP and approved modifications, be continued.

Continued implementation of the RAWP will include monthly SVE system O&M, monthly status

reporting, semi-annual indoor air sampling (July and December), and preparation of an annual

Site Management Report for 2018.

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716
PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com
New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT

6.0 REFERENCES

Administrative Order on Consent for Removal Action, United States Environmental Protection Agency,

Region 2, 2004, Index Number CERCLA-02-2004-2005

Administrative Order on Consent for Remedial Action, United States Environmental Protection Agency,

Region 2, 2009, Index Number CERCLA-02-2009-2015

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air - Second

Edition, United States Environmental Protection Agency, Office of Research and Development, January

1999

Final Remedial Investigation Report, Former Computer Circuits Superfund Site, P.W. Grosser Consulting,

Inc., February 2007

Guidance for Evaluating Soil Vapor Intrusion in the State of New York, Final, New York State Department

of Health, October 2006

Guidelines for the Control of Toxic Ambient Air Contaminants, New York State Department of

Environmental Conservation, November 1997, New York State DAR-1

Interim Remedial Measure, Former Computer Circuits Superfund Site, P.W. Grosser Consulting, Inc., July

2005

Remedial Action Work Plan, Former Computer Circuits Superfund Site, P.W. Grosser Consulting, Inc., May

2009

Summa Canister Sampling, United States Environmental Protection Agency, Environmental Response

Team, July 1995

P.W. Grosser Consulting • 630 Johnson Avenue, Suite 7 • Bohemia, NY 11716 PH 631.589.6353 • FX 631.589.8705 • www.pwgrosser.com New York, NY • Syracuse, NY • Seattle, WA • Shelton, CT

TABLES

Table 1

SVE System Milestones Former Computer Circuits Site

Date(s)	Milestone
12/12/2005	Startup of North SVE System
2/22/2007 to 4/9/2007	North SVE System down - blower replacement
5/14/2007 to 5/16/2007	North SVE System down - shed broken into
11/13/2007	North SVE System carbon replaced
2/28/2008 to 3/19/2008	North SVE System shut down during EPA investigation at EPA's request
9/1/2008	South SVE System installed by EPA
9/18/2008	North SVE System vertical extraction well closed - system drawing from horizontal well only (at EPA's request)
11/11/2009	North SVE System remote monitoring system installed
12/3/2009	PWGC takes over operation and maintenance of South SVE System from EPA
2/13/2012 to 4/11/2012	South SVE System down - blower replacement
7/24/2012 to 8/2/2012	South SVE System down - effluent piping repair
10/29/2012 to 11/16/2012	North and South SVE Systems shut down to prevent damage during Hurricane Sandy
6/18/2015	South SVE System vertical extraction wells closed - system drawing from horizontal wells only

SVE System Performance Sampling Analytical Data Summary
Former Computer Circuits Site

Table 2

LOCATION	CAS Number	NYSDOH	NORTH SVE		NORTH SVE		SOUTH SVE		SOUTH SVE	
SAMPLING DATE		AGV ¹	7/26/2	7/26/2017		12/19/2017		017	12/19/2017	
LAB SAMPLE ID			L17260	L1726012-02		05-02	L1726929-01		L17469	05-01
1,1-Dichloroethene	75-35-4	NS	0.793	U	0.793	U	0.793	U	0.793	U
cis-1,2-Dichloroethene	156-59-2	NS	7.1		0.845		0.793	U	0.793	U
Tetrachloroethene	127-18-4	30	7.53		42.6		3.87		1.36	U
trans-1,2-Dichloroethene	156-60-5	NS	1.39		0.793	U	0.793	U	0.793	U
Trichloroethene	79-01-6	5	95.1		48.3		15.9		4.05	
Vinyl chloride	75-01-4	NS	0.511	U	0.511	U	0.511	U	0.511	U

Notes:

All concentrations are μg/m³

- 1 Air Guideline Value (AGV), NYSDOH Soil Vapor Intrusion Guidance (applies to indoor air only)
- U Compound not detected above the laboratory Method Detection Limit

Mass Removal Calculations Former Computer Circuits Site

			North SVE System			
Sample	Number of	Trichloroethene	Total VOCs	Average SVE	Average VOC	Total VOCs Remove
Date	Days This			Flow Rate	Removal Rate ¹	
	Period	(ug/m3)	(ug/m3)	(cfm)	(lbs/day)	(lbs)
12/20/2005	NA	690	1,006	110	NA	NA
3/21/2006	91	0	23	110	5.073E-03	0.46
6/20/2006	91	0	0	110	1.134E-04	0.01
1/5/2007	199	352	758	100	3.398E-03	0.68
4/20/2007	105	550	1,310	70	6.489E-03	0.68
6/26/2007	67	948	3,657	70	1.559E-02	1.04
10/9/2007	105	2,890	5,076	70	2.740E-02	2.88
12/20/2007	72	698	2,344	70	2.328E-02	1.68
2/25/2008	67	1,030	2,442	70	1.502E-02	1.01
6/30/2008	126	1,530	2,551	70	1.567E-02	1.97
9/26/2008	88	1,100	1,421	70	1.246E-02	1.10
12/18/2008	83	331	478	70	5.959E-03	0.49
3/11/2009	83	470	717	60	3.214E-03	0.27
6/23/2009	104	439	686	60	3.773E-03	0.39
9/9/2009	78	524	767	60	3.908E-03	0.30
12/29/2009	111	106	188	60	2.569E-03	0.29
6/30/2010	183	235	393	60	1.563E-03	0.29
12/22/2010	175	1	10	60	1.084E-03	0.19
7/28/2011	218	194	223	60	6.271E-04	0.14
12/6/2011	131	68	76	60	8.030E-04	0.11
7/24/2012	231	154	442	60	1.393E-03	0.32
12/19/2012	148	52	137	60	1.558E-03	0.23
7/29/2013	222	9	51	60	5.048E-04	0.11
12/26/2013	150	41	105	60	4.192E-04	0.06
7/29/2014	215	12	46	60	4.057E-04	0.09
12/18/2014	142	31	79	60	3.361E-04	0.05
7/29/2015	223	97	207	60	7.702E-04	0.17
12/15/2015	139	36	130	60	9.066E-04	0.13
7/27/2016	225	84	274	60	1.087E-03	0.24
12/20/2016	146	36	48	60	8.661E-04	0.13
7/26/2017	218	95	182	60	6.180E-04	0.13
12/19/2017	146	48	130	60	8.372E-04	0.12

Sample	Number of	Trichloroethene	South SVE System Total VOCs	Average SVE	Average VOC	Total VOCs Remove
		memoroethene	Total vocs		· .	Total VOCS Reliiove
Date	Days This			Flow Rate ²	Removal Rate ¹	
	Period	(ug/m3)	(ug/m3)	(cfm)	(lbs/day)	(lbs)
12/29/2009	NA	79	313	175	NA	NA
6/30/2010	183	0	29	175	2.680E-03	0.49
12/22/2010	175	4	51	175	6.304E-04	0.11
7/28/2011	218	97	137	175	1.479E-03	0.32
12/6/2011	131	0	0	175	1.076E-03	0.14
12/19/2012	379	4	41	175	3.190E-04	0.12
7/29/2013	222	0	385	175	3.343E-03	0.74
12/26/2013	150	5	46	175	3.388E-03	0.51
7/29/2014	215	0	28	175	5.821E-04	0.13
12/18/2014	142	3	30	175	4.500E-04	0.06
7/29/2015	223	1	95	175	9.742E-04	0.22
12/15/2015	139	5	117	175	1.660E-03	0.23
7/27/2016	225	8	46	175	1.275E-03	0.29
12/20/2016	146	0	28	175	5.767E-04	0.08
8/2/2017	225	16	285	175	2.454E-03	0.55
12/19/2017	139	4	44	175	2.579E-03	0.36

1 - Removal rates calculations based on equation in EPA 542-R-02-009, Elements for Effective Operation of Pump and Treatment Systems:

$$M_{air} = Qair \times Cair \times \frac{0.0283 \ m^3}{ft^3} \times \frac{1440 \ min}{day} \times \frac{2.2 \ lbs}{10^9 \ \mu g}$$

 M_{air} = mass loading, removal rate in air (lbs/day) Q_{air} = flow rate in air (cfm) C_{air} =contaminant concentration (µg/m³)

2 - Flow rate is based on vacuum gauge reading and manufacturer's Blower Performance Curve for Ametek Rotron EN656 M5XL

Indoor Air Sample Analytical Data Summary (July 2017)
Former Computer Circuits Site

Table 4

LOCATION SAMPLING DATE LAB SAMPLE ID	CAS Number	NYSDOH AGV ¹	IA-2 7/26/2017 L1726012-04	IA-3 7/26/2017 L1726012-06	IA-4 7/26/2017 L1726012-03	IA-5 7/26/2017 L1726012-07	IA-8 7/26/2017 L1726012-05
1,1-Dichloroethene	75-35-4	NS	0.079 U				
cis-1,2-Dichloroethene	156-59-2	NS	0.079 U				
Tetrachloroethene	127-18-4	30	0.136 U	0.42	0.136 U	0.325	0.21
trans-1,2-Dichloroethene	156-60-5	NS	0.793 U				
Trichloroethene	79-01-6	0.36*	0.172	0.613	0.107 U	0.177	0.58
Vinyl chloride	75-01-4	NS	0.051 U				

Notes:

All concentrations are μg/m³

- 1 Air Guideline Value (AGV), NYSDOH Soil Vapor Intrusion Guidance (applies to indoor air only)
- * Site specifiec target concentration for TCE in indoor air as specified in the Record of Decision for the site
- U Compound not detected abovethe laboratory Method Detection Limit

Highlighted concentrations exceed the site specific target concentration of 0.36 $\mu\text{g/m}^3$

Ambient Air Sample Analytical Data Summary (December 2017)

Former Computer Circuits Site

Table 5

LOCATION SAMPLING DATE LAB SAMPLE ID	CAS Number	NYSDOH AGV ¹	IA-2 12/19/2017 L1746905-04	IA-3 12/19/2017 L1746905-06	IA-4 12/19/2017 L1746905-03	IA-5 12/19/2017 L1746905-07
1,1-Dichloroethene	75-35-4	NS	0.079 U	0.079 U	0.079 U	0.079 U
cis-1,2-Dichloroethene	156-59-2	NS	0.079 U	0.079 U	0.079 U	0.079 U
Tetrachloroethene	127-18-4	30	0.522	0.583	0.414	0.637
trans-1,2-Dichloroethene	156-60-5	NS	0.793 U	0.793 U	0.793 U	0.793 U
Trichloroethene	79-01-6	0.36*	0.349	0.763	0.317	0.414
Vinyl chloride	75-01-4	NS	0.051 U	0.051 U	0.051 U	0.051 U

Notes:

All concentrations are μg/m³

- 1 Air Guideline Value (AGV), NYSDOH Soil Vapor Intrusion Guidance (applies to indoor air only)
- * Site specifiec target concentration for TCE in indoor air as specified in the Record of Decision for the site
- U Compound not detected above he laboratory Method Detection Limit

Highlighted concentrations exceed the site specific target concentration of $0.36 \,\mu\text{g/m}^3$

Table 6

Historic TCE concentrations in Ambient Air Former Computer Circuits Site

LOCATION	IA-1	IA-2 ¹	IA-3 ²	IA-4	IA-5 ³	IA-6	IA-7	IA-8	IA-9	IA-10
SAMPLING DATE								1		
February 2005 *, a	NS	33	12	NS	6.4	NS	NS	NS	NS	NS
February 2005	NS	23	17	NS	17	NS	NS	NS	NS	NS
December 2005	NS	4.6	5.9	NS	3.5	NS	NS	NS	NS	NS
January 2006	NS	0.81	0.91	NS	5.9	NS	NS	NS	NS	NS
February 2006	NS	1.9	1.8	NS	1.5	NS	NS	NS	NS	NS
March 2006	NS	9.7	8.1	NS	10	NS	NS	NS	NS	NS
April 2006	NS	0.45	0.21 U	NS	0.97	NS	NS	NS	NS	NS
May 2006	NS	3.8	7	NS	5.1	NS	NS	NS	NS	NS
June 2006	NS	0.37 U	5.4	NS	0.75	NS	NS	NS	NS	NS
July 2006	NS	2.9	4.2	NS	2.4	NS	NS	NS	NS	NS
August 2006	NS	5.91	5.91	NS	1.07 U	NS	NS	NS	NS	NS
September 2006	NS	2.69	26.87	NS	2.69	NS	NS	NS	NS	NS
December 2006	NS	1.1 U	NS	NS	NS	NS	NS	NS	NS	NS
March 2007 b	NS	5.48	NS	NS	NS	NS	NS	NS	NS	NS
June 2007	NS	0.831	NS	NS	NS	NS	NS	NS	NS	NS
September 2007	NS	2.39	NS	NS	NS	NS	NS	NS	NS	NS
December 2007	NS	1.3	NS	NS	NS	NS	NS	NS	NS	NS
March 2008 †	NS	2.95	NS NS	NS	NS	NS	NS NS	NS	NS	NS
May 2008 **	0.269 U	0.269 U	6.02	0.399	0.661	NS	NS NS	NS	NS	NS
June 2008 ‡	0.209 U NS	3.25	NS	NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS
l	NS	0.445	NS NS	NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS
'					NS NS					NS NS
December 2008	NS 0.350 H	1.07	NS 1.66	NS 0.005		NS 1.76	NS 1.61	NS 1.60	NS 1.70	
1 Col daily 2005	0.358 U	0.454 J	1.66	0.865	0.817	1.76	1.61	1.69	1.78	0.962
March 2009	NS	0.107 U	NS	NS	NS	NS	NS	NS	NS	NS
June 2009	NS	0.368	NS	NS	NS	NS	NS	NS	NS	NS
September 2009	NS	1.45	NS	NS	NS	NS	NS	NS	NS	NS
December 2009	0.107 U	0.107 U	0.972	0.107 U	0.107 U	0.805	0.854	1.05	NS	NS
June 2010	0.231	0.209	1.97	0.489	0.338	1.89	1.71	2.09	NS	NS
December 2010	0.107 U	0.107 U	1.16	0.107 U	0.118	1.2	1.21	1.17	NS	NS
July 2011	0.338	0.355	1.13	0.279	0.107 U	1.1	1.01	0.924	1.27	0.107 U
December 2011	0.215	0.22	1.34	0.231	0.274	1.34	1.32	1.41	NS	NS
July 2012	0.118	0.14	1.12	0.107 U	0.107 U	0.897	0.946	1.03	0.14	NS
December 2012	0.107 U	0.107 U	0.919	0.107 U	0.107 U	0.957	0.871	1.1	NS	NS
July 2013	0.263	0.236	1.96	0.236	0.183	1.93	1.8	1.96	NS	NS
December 2013	0.199	0.161	1.41	0.183	0.317	1.08	1.03	1.67	NS	NS
July 2014	0.107 U	0.107 U	1.83	0.107 U	0.602	2.08	1.9	2.16	NS	NS
December 2014	0.107 U	0.107 U	0.865	0.107 U	0.107 U	0.892	0.849	0.897	NS	NS
July 2015	NS	0.285	0.844	0.269	0.376	NS	NS	0.769	NS	NS
December 2015	NS	0.118	0.5	0.107 U	0.236	NS	NS	0.489	NS	NS
July 2016	NS	0.107 U	1.19	0.107 U	0.290	NS	NS NS	1.13	NS	NS NS
December 2016	NS	0.107 U	0.618	0.107 U	0.253	NS	NS NS	0.597	NS NS	NS
July 2017	NS	0.107 0	0.613	0.107 U	0.233	NS	NS NS	0.58	NS NS	NS NS
•										
December 2017	NS	0.349	0.763	0.317	0.414	NS	NS	0.795	NS	NS

Notes:

All concentrations are μg/m³

- 1 Includes data from IRM sample location AS-2
- 2 Includes data from IRM sample location AS-3
- 3 Includes data from IRM Sample location AS-1
- * Samples were collected with the buildings ventilation system off (2/18/2005)
- # Samples were collected with the buildings ventilation system on (2/22/2005)
- † Sample was collected with the SVE system shut down per the EPA's Request
- ‡ Sample was collected immediately after the SVE system was restarted following a power outage
- **Samples collected by EPA ERT

Highlighted values exceed site specific target concentration of 0.36 $\mu g/m^3$

- a Southwest portion of the building occupied, remainder of building interior under construction
- b Southwest, southeast, and northeast portions of the building occupied. Northwest portion under construction
- c Interior contruction complete, entire building occupied

Table 7

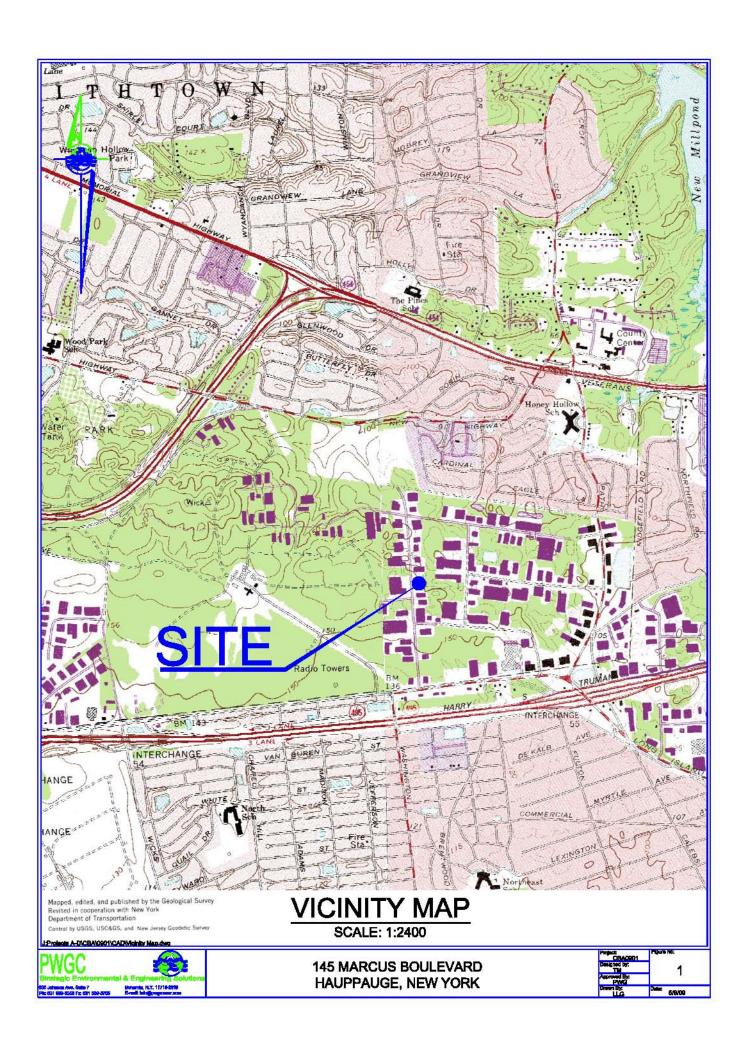
Historical TCE Concentrations in Groundwater
Former Computer Circuits Site

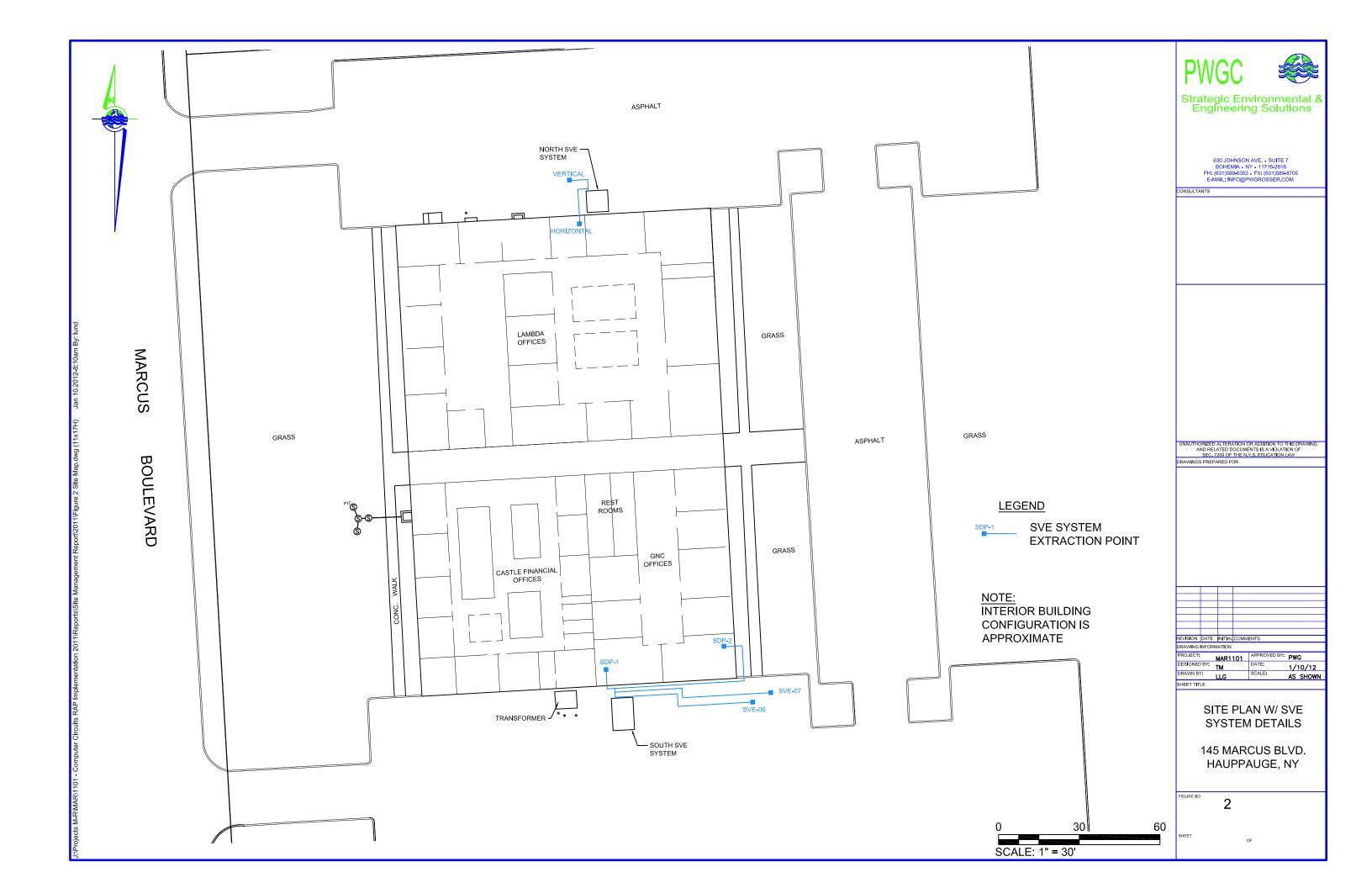
Sampling Date	MW - 1	MW - 2	MW - 3	MW - 4	MW - 5	MW - 6	MW - 7	MW - 8	MW - 9
April 2002	39	200	17	38	31	67	1 J	51	53
July 2002	46	280	14	23	100	96	10 U	42	56
December 2006	15	28	10 U	3 J	5 U	4 J	NS	NS	NS
June 2007	NS	NS	NS	NS	NS	NS	5 U	14	17
May 2008*	9.29	1.32 J	5 U	5 U	NS	5 U	5 U	5.06	11.3
June 2010	3.3	1.8	0.5 U	1.4	0.5 U	NS	0.5 U	NS	5.4
December 2010	0.5 U	0.83	0.5 U	NS	0.5 U	NS	0.5 U	NS	4.6
July 2011	1.2	0.66	0.5 U	0.5 U	0.5 U	NS	0.5 U	NS	4.1
July 2012	1	0.66	0.5 U	0.5 U	0.5 U	NS	0.5 U	NS	1.6
July 2013	0.31 J	0.35 J	0.5 U	0.5 U	0.5 U	NS	0.5 U	NS	0.59
July 2014	0.2 J	0.19 J	0.5 U	0.5 U	0.5 U	NS	0.5 U	NS	0.29 J

Sampling Date	MW - 10	MW - 11	MW-AR2	MW-12S	MW-12D	MW-13S	MW-13D	MW-14S	MW-14D
April 2002	37	5 J	10 U	NS	NS	NS	NS	NS	NS
July 2002	170	3 J	10 U	NS	NS	NS	NS	NS	NS
December 2006	NS	NS	NS	NS	NS	NS	NS	NS	NS
June 2007	8.3	5 U	NS						
May 2008*	2.98 J	5 U	5 U	9.82	5 U	8.26	5 U	10.8	5 U
June 2010	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	4.9	0.5 U	6.4	0.5 U
December 2010	0.85	0.5 U	0.5 U	NS	NS	0.5 U	5.3	0.5 U	3.4
July 2011	0.54	0.5 U	0.5 U	0.5 U	0.5 U	2.7	0.5 U	2.9 U	0.5 U
July 2012	0.54	0.5 U	0.5 U	0.5 U	0.62	2.1	0.5 U	4.2	0.65
July 2013	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	1.4	0.5 U	4.4	0.5 U
July 2014	0.21 J	0.5 U	NS	0.5 U	NS	0.43 J	0.5 U	4.3	0.5

Notes:

All concentrations are μg/L (ppb)


U - Compound not detected abovethe laboratory Method Detection Limit


Highlighted concentrations exceed AWQS

J - Estimated value

^{*}Samples collected by EPA ERT

FIGURES

Strategic Environmental & Engineering Solutions

630 JOHNSON AVE. • SUITE 7 BOHEMIA • NY • 11716-2618 PH: (631)589-6353 • FX: (631)589-8705 E-MAIL; INFO@PWGROSSER.COM

UNAUTHORIZED ALTERATION OR ADDITION TO THIS DRAWING AND RELATED DOCUMENTS IS A VIOLATION OF SEC. 7209 OF THE N.Y.S. EDUCATION LAW RAWINGS PREPARED FOR

REVISION DATE INITIAL COMMENT DRAWING INFORMATION PROJECT: MAR1101 APPROVED B
DESIGNED BY: TM DATE:
SCALE: 1/10/12 AS SHOWN

MONITORING WELL LOCATIONS

COMPUTER CIRCUITS SUPERFUND SITE HAUPPAUGE, NY

200 SCALE: 1" = 100'

RESPONSE TEAM

GOOGLE

AERIAL PROVIDED BY:

WELL LOCATION MAP

SCALE: 1" = 100'

APPENDIX A CORRESPONDENCE

From: <u>Dannenberg, Mark</u>
To: <u>Thomas Melia</u>

Cc: Kris Almskog; DiGuardia, Lou; Badalamenti, Salvatore

Subject: RE: Former Computer Circuits Site

Date: Thursday, June 04, 2015 12:08:30 PM

Attachments: <u>image001.gif</u>

image002.png image003.png image004.png

Hi Tom.

Based on recent groundwater and indoor air data collected at the Computer Circuits site, we conclude that modifying the approved RAWP (as you request) is acceptable.

Specifically, the modifications are as follows:

- 1) Eliminate future groundwater sampling events. The monitoring wells should not be abandoned, as there may be the need to resume groundwater sampling in the future;
- 2) A reduction in the number of indoor air samples collected during each semi-annual sampling event. The amount of indoor air samples shall be reduced from 8 locations to 5 locations. Specifically, sample locations IA-2, IA-3, IA-4, IA-5, and IA-8 shall continue to be used for the collection of samples; and
- 3) The SVE system on the south/southwestern portion of the building shall be modified to only draw from the horizontal extraction points beneath the building in order to allow for a more rapid reduction of VOCs beneath the southwestern portion of the building. When TCE concentrations within the southwestern portion of the building have been reduced below the target concentrations, the vertical extraction well would be re-opened.

Also, as we discussed by phone, at some time in the near future, we should consider shutting-off the SVE systems for a few weeks and then sampling indoor air and soil gas beneath the building to determine whether there is a rebound in TCE levels.

You indicated that you are scheduling the next round of indoor air monitoring in July 2015. Please let us know your schedule when you firm-up your plans.

Mark Dannenberg U.S. EPA, Region 2 290 Broadway 20th Floor New York, NY 10007

From: Thomas Melia [mailto:thomasm@pwgrosser.com]

Sent: Friday, February 27, 2015 11:41 AM

To: Dannenberg, Mark

Cc: Kris Almskog

Subject: Former Computer Circuits Site

Mark -

Attached is a copy of the Annual Site Management Report for the Former Computer Circuits site. As detailed in the report, we are making the following requests for modifications to the approved RAWP:

- 1) Due to the continued minimal VOC concentrations in groundwater, eliminate future groundwater sampling events.
- 2) Due to the continued low level concentrations of TCE in indoor air, reduce the number of indoor air samples collected during each semi-annual sampling event.
- 3) Modify the south SVE system to only draw from the horizontal extraction points beneath the building to enhance the removal of VOCs from beneath the southwestern portion of the building.

Please let me know if you have any questions or comments on the Report or our requested modifications of the RAWP.

Thomas Melia | Project Manager

630 Johnson Ave, Suite 7 Bohemia, NY 11716

w. 631.589.6353

c. 516.315.6002

f. 631.589.8705

The information contained in this e-mail, including any attachments, is intended solely for the use of the individual to which it is addressed and may contain information that is privileged and confidential. Any review, use, distribution or disclosure by others is strictly prohibited. If you have received this communication in error, please notify the sender immediately and delete the email message along with any attachments. Thank you.

Please consider the environment - think before you print!

Thomas Melia

From: Dannenberg.Mark@epamail.epa.gov
Sent: Wednesday, November 16, 2011 4:43 PM

To: Thomas Melia
Cc: Kris Almskog

Subject: Re: Former Computer Circuits Site

Hi Tom. Yes, per our discussion, we have determined that future sampling will be performed on an annual basis. As such, the second round of groundwater sampling for this year (2011) is not necessary.

Please give me a few days notice (preferably a week or more) before you perform the indoor air monitoring. Mark

From: Thomas Melia thomasm@pwgrosser.com
To: Mark Dannenberg/R2/USEPA/US@EPA
Cc: Kris Almskog kris@pwgrosser.com

Date: 11/16/2011 03:26 PM

Subject: Former Computer CIrcuits Site

Mark – I'm in the process of setting up indoor air sampling for next month. I'd just like to confirm that, per our discussion on August 10, the second round or groundwater sampling will not be necessary, and in future years, EPA will only require one annual groundwater sampling event. Thanks.

Thomas Melia

Project Manager

.....

P.W. Grosser Consulting 630 Johnson Avenue, Suite 7 Bohemia, NY 11716

Phone: 631.589.6353 Fax: 631.589.8705 Cell: 516.315.6002

E-mail: thomasm@pwgrosser.com
Web: www.pwgrosser.com

The information contained in this e-mail, including any attachments, is intended solely for the use of the individual to which it is addressed and may contain information that is privileged and confidential. Any review, use, distribution or disclosure by others is strictly prohibited. If you have received this communication in error, please notify the sender immediately and delete the email message along with any attachments. Thank you.

A Please consider the environment - think before you print!

[attachment "image001.gif" deleted by Mark Dannenberg/R2/USEPA/US] [attachment "image002.png" deleted by Mark Dannenberg/R2/USEPA/US]

APPENDIX B SVE SYSTEM MONITORING FORMS

APPENDIX C LABORATORY ANALYTICAL REPORTS

ANALYTICAL REPORT

Lab Number: L1726012

Client: P. W. Grosser

630 Johnson Avenue

Suite 7

Bohemia, NY 11716

ATTN: Thomas Melia Phone: (631) 589-6353

Project Name: MAR1601
Project Number: MAR1601
Report Date: 08/02/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), NJ NELAP (MA015), CT (PH-0141), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-13-00067), USFWS (Permit #LE2069641).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

 Lab Number:
 L1726012

 Report Date:
 08/02/17

	pha ample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1	726012-01	SVE-SOUTH (INF)	SOIL_VAPOR	145 MARCUS BLVD	07/26/17 10:05	07/27/17
L1	726012-02	SVE-NORTH (INF)	SOIL_VAPOR	145 MARCUS BLVD	07/26/17 09:30	07/27/17
L1	726012-03	IA-4	AIR	145 MARCUS BLVD	07/26/17 16:05	07/27/17
L1	726012-04	IA-2	AIR	145 MARCUS BLVD	07/26/17 16:10	07/27/17
L1	726012-05	IA-8	AIR	145 MARCUS BLVD	07/26/17 16:25	07/27/17
L1	726012-06	IA-3	AIR	145 MARCUS BLVD	07/26/17 16:20	07/27/17
L1	726012-07	IA-5	AIR	145 MARCUS BLVD	07/26/17 16:15	07/27/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any guestions.

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on July 24, 2017. The canister certification results are provided as an addendum.

L1726012-04 results for Acetone should be considered estimated due to co-elution with a non-target peak.

Sample Receipt

The sample designated SVE-SOUTH (INF) (L1726012-01) was received at a final pressure of -28.7 inHg. The client was contacted and the analysis was cancelled.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/02/17

Christopher J. Anderson

ALPHA

AIR

SAMPLE RESULTS

Lab ID: L1726012-02
Client ID: SVE-NORTH (INF)
Sample Location: 145 MARCUS BLVD

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 07/30/17 02:37

Analyst: MB

Date Collected: 07/26/17 09:30
Date Received: 07/27/17
Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.335	0.200		1.66	0.989			1
Chloromethane	0.296	0.200		0.611	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	6.65	5.00		12.5	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	5.07	1.00		12.0	2.38			1
Trichlorofluoromethane	0.332	0.200		1.87	1.12			1
Isopropanol	10.1	0.500		24.8	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	1.22	0.500		3.70	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	0.557	0.200		4.27	1.53			1
trans-1,2-Dichloroethene	0.351	0.200		1.39	0.793			1
1,1-Dichloroethane	0.534	0.200		2.16	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	1.79	0.200		7.10	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Lab Number: L1726012 Report Date:

SAMPLE RESULTS

Lab ID: L1726012-02 Client ID: SVE-NORTH (INF) Sample Location: 145 MARCUS BLVD

07/26/17 09:30 Date Collected:

07/27/17

08/02/17

Date Received: Field Prep: Not Specified

Cample Location: 140 MA	5 WAROOG BEVB			тісіа і тер.			Not Opcomed		
		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Man	sfield Lab								
Chloroform	0.228	0.200		1.11	0.977			1	
Tetrahydrofuran	ND	0.500		ND	1.47			1	
1,2-Dichloroethane	ND	0.200		ND	0.809			1	
n-Hexane	ND	0.200		ND	0.705			1	
1,1,1-Trichloroethane	0.884	0.200		4.82	1.09			1	
Benzene	ND	0.200		ND	0.639			1	
Carbon tetrachloride	ND	0.200		ND	1.26			1	
Cyclohexane	ND	0.200		ND	0.688			1	
1,2-Dichloropropane	ND	0.200		ND	0.924			1	
Bromodichloromethane	ND	0.200		ND	1.34			1	
1,4-Dioxane	0.315	0.200		1.14	0.721			1	
Trichloroethene	17.7	0.200		95.1	1.07			1	
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1	
Heptane	ND	0.200		ND	0.820			1	
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1	
Toluene	ND	0.200		ND	0.754			1	
2-Hexanone	ND	0.200		ND	0.820			1	
Dibromochloromethane	ND	0.200		ND	1.70			1	
1,2-Dibromoethane	ND	0.200		ND	1.54			1	
Tetrachloroethene	1.11	0.200		7.53	1.36			1	
Chlorobenzene	ND	0.200		ND	0.921			1	
Ethylbenzene	ND	0.200		ND	0.869			1	
p/m-Xylene	ND	0.400		ND	1.74			1	
Bromoform	ND	0.200		ND	2.07			1	
Styrene	ND	0.200		ND	0.852			1	

 Lab Number:
 L1726012

 Report Date:
 08/02/17

SAMPLE RESULTS

Lab ID: L1726012-02
Client ID: SVE-NORTH (INF)
Sample Location: 145 MARCUS BLVD

Date Collected:

07/26/17 09:30

Date Received: Field Prep:

07/27/17 Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	106		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	86		60-140

07/26/17 16:05

Not Specified

07/27/17

Date Collected:

Date Received:

Field Prep:

Project Name:MAR1601Lab Number:L1726012Project Number:MAR1601Report Date:08/02/17

SAMPLE RESULTS

Lab ID: L1726012-03

Client ID: IA-4

Sample Location: 145 MARCUS BLVD

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 07/29/17 20:10

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.336	0.200		1.66	0.989			1
Chloromethane	0.704	0.200		1.45	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	42.0	5.00		79.1	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	13.4	1.00		31.8	2.38			1
Trichlorofluoromethane	0.255	0.200		1.43	1.12			1
sopropanol	18.7	0.500		46.0	1.23			1
Tertiary butyl Alcohol	0.701	0.500		2.13	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.510	0.500		1.50	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

 Lab Number:
 L1726012

 Report Date:
 08/02/17

SAMPLE RESULTS

Lab ID: L1726012-03

Client ID: IA-4

Sample Location: 145 MARCUS BLVD

Date Collected: 07/26/17 16:05

Date Received: 07/27/17

Field Prep: Not Specified

Cample Location. 145 WATE	OO BEVB			ricia i rep.			Not opcome		
	ppbV			ug/m3			Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfi	eld Lab								
n-Hexane	ND	0.200		ND	0.705			1	
Benzene	ND	0.200		ND	0.639			1	
Cyclohexane	ND	0.200		ND	0.688			1	
1,2-Dichloropropane	ND	0.200		ND	0.924			1	
Bromodichloromethane	ND	0.200		ND	1.34			1	
1,4-Dioxane	ND	0.200		ND	0.721			1	
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1	
Heptane	0.962	0.200		3.94	0.820			1	
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1	
Toluene	0.358	0.200		1.35	0.754			1	
2-Hexanone	ND	0.200		ND	0.820			1	
Dibromochloromethane	ND	0.200		ND	1.70			1	
1,2-Dibromoethane	ND	0.200		ND	1.54			1	
Chlorobenzene	ND	0.200		ND	0.921			1	
Ethylbenzene	ND	0.200		ND	0.869			1	
o/m-Xylene	ND	0.400		ND	1.74			1	
Bromoform	ND	0.200		ND	2.07			1	
Styrene	ND	0.200		ND	0.852			1	
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
o-Xylene	ND	0.200		ND	0.869			1	
4-Ethyltoluene	ND	0.200		ND	0.983			1	
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1	
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1	
Benzyl chloride	ND	0.200		ND	1.04			1	
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1	

SAMPLE RESULTS

Lab ID: L1726012-03

Client ID: IA-4

Sample Location: 145 MARCUS BLVD

Date Collected: 07/2

07/26/17 16:05

Date Received: 07/27/17

Field Prep: Not Specified

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	86		60-140
Bromochloromethane	87		60-140
chlorobenzene-d5	76		60-140

SAMPLE RESULTS

Lab ID: L1726012-03

Client ID: IA-4

Sample Location: 145 MARCUS BLVD

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 07/29/17 20:10

Analyst: MB

Date Received:	07/27/17
Field Prep:	Not Specified

07/26/17 16:05

Date Collected:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	Results RL MDL C	Qualifier	Factor	
Volatile Organics in Air by SIM - Mar	sfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.076	0.020		0.478	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	89		60-140
chlorobenzene-d5	84		60-140

SAMPLE RESULTS

Lab ID: L1726012-04

Client ID: IA-2

Sample Location: 145 MARCUS BLVD

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 07/29/17 21:21

Analyst: MB

Date Collected: 07/26/17 16:10
Date Received: 07/27/17
Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Dichlorodifluoromethane	0.318	0.200		1.57	0.989			1
Chloromethane	0.658	0.200		1.36	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	35.6	5.00		67.1	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	11.3	1.00		26.8	2.38			1
Trichlorofluoromethane	0.327	0.200		1.84	1.12			1
sopropanol	26.0	0.500		63.9	1.23			1
Tertiary butyl Alcohol	0.633	0.500		1.92	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.578	0.500		1.70	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
,2-Dichloroethane	ND	0.200		ND	0.809			1

 Lab Number:
 L1726012

 Report Date:
 08/02/17

SAMPLE RESULTS

Lab ID: L1726012-04

Client ID: IA-2

Sample Location: 145 MARCUS BLVD

Date Collected: 07/26/17 16:10

Date Received: 07/27/17
Field Prep: Not Specified

Cample Location. 140 MAIN	JOO DE VD				тісіа і тер.			Not opecine	
		ppbV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfi	eld Lab								
n-Hexane	ND	0.200		ND	0.705			1	
Benzene	ND	0.200		ND	0.639			1	
Cyclohexane	ND	0.200		ND	0.688			1	
1,2-Dichloropropane	ND	0.200		ND	0.924			1	
Bromodichloromethane	ND	0.200		ND	1.34			1	
1,4-Dioxane	ND	0.200		ND	0.721			1	
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1	
Heptane	0.320	0.200		1.31	0.820			1	
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1	
Toluene	0.417	0.200		1.57	0.754			1	
2-Hexanone	ND	0.200		ND	0.820			1	
Dibromochloromethane	ND	0.200		ND	1.70			1	
1,2-Dibromoethane	ND	0.200		ND	1.54			1	
Chlorobenzene	ND	0.200		ND	0.921			1	
Ethylbenzene	ND	0.200		ND	0.869			1	
o/m-Xylene	ND	0.400		ND	1.74			1	
Bromoform	ND	0.200		ND	2.07			1	
Styrene	0.229	0.200		0.975	0.852			1	
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1	
o-Xylene	ND	0.200		ND	0.869			1	
4-Ethyltoluene	ND	0.200		ND	0.983			1	
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1	
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1	
Benzyl chloride	ND	0.200		ND	1.04			1	
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1	

Report Date: 08/02/17

SAMPLE RESULTS

Lab ID: L1726012-04

Client ID: IA-2

Sample Location: 145 MARCUS BLVD

Date Collected: 0

07/26/17 16:10

L1726012

Date Received: 07/27/17
Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		60-140
Bromochloromethane	88		60-140
chlorobenzene-d5	80		60-140

Project Name: Lab Number: MAR1601 L1726012 Project Number: MAR1601

Report Date: 08/02/17

SAMPLE RESULTS

Lab ID: Date Collected: 07/26/17 16:10 L1726012-04

Client ID: IA-2 Date Received: 07/27/17

Sample Location: 145 MARCUS BLVD Field Prep: Not Specified

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 07/29/17 21:21

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - I	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	0.024	0.020		0.131	0.109			1
Carbon tetrachloride	0.075	0.020		0.472	0.126			1
Trichloroethene	0.032	0.020		0.172	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	87		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	86		60-140

SAMPLE RESULTS

Lab ID: L1726012-05

Client ID: IA-8

Sample Location: 145 MARCUS BLVD

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 07/29/17 21:57

Analyst: MB

Date Collected:	07/26/17 16:25
Date Received:	07/27/17

Field Prep: Not Specified

		PpbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.350	0.200		1.73	0.989			1
Chloromethane	0.781	0.200		1.61	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	80.2	5.00		151	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	13.7	1.00		32.5	2.38			1
Trichlorofluoromethane	0.206	0.200		1.16	1.12			1
sopropanol	5.49	0.500		13.5	1.23			1
Tertiary butyl Alcohol	0.614	0.500		1.86	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.593	0.500		1.75	1.47			1
Ethyl Acetate	0.748	0.500		2.70	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

 Lab Number:
 L1726012

 Report Date:
 08/02/17

SAMPLE RESULTS

Lab ID: L1726012-05

Client ID: IA-8

Sample Location: 145 MARCUS BLVD

Date Collected: 07/26/17 16:25

Date Received: 07/27/17
Field Prep: Not Specified

		ppbV			ug/m3			Dilution Factor
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	1 actor
Volatile Organics in Air - Mansfie	eld Lab							
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.465	0.200		1.75	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1

Lab Number:

L1726012

Report Date:

08/02/17

SAMPLE RESULTS

Lab ID: L1726012-05

Date Collected:

07/26/17 16:25

Client ID: IA-8

Date Received:

07/27/17

Sample Location: 14

145 MARCUS BLVD

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	77		60-140

Project Name: Lab Number: MAR1601 L1726012 Project Number: MAR1601

Report Date: 08/02/17

SAMPLE RESULTS

Lab ID: Date Collected: L1726012-05 07/26/17 16:25

Client ID: IA-8 Date Received: 07/27/17

Sample Location: 145 MARCUS BLVD Field Prep: Not Specified

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 07/29/17 21:57

Analyst: MB

		ppbV		ug/m3				Dilution
Parameter	Results	RL	RL MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	lansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.077	0.020		0.484	0.126			1
Trichloroethene	0.108	0.020		0.580	0.107			1
Tetrachloroethene	0.031	0.020		0.210	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	86		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	85		60-140

07/26/17 16:20

Not Specified

07/27/17

Date Collected:

Date Received:

Field Prep:

Project Name:MAR1601Lab Number:L1726012Project Number:MAR1601Report Date:08/02/17

SAMPLE RESULTS

Lab ID: L1726012-06

Client ID: IA-3

Sample Location: 145 MARCUS BLVD

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 07/29/17 22:32

Analyst: MB

Analyst:	MB								
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield	Lab							
Dichlorodifluoromethane		0.292	0.200		1.44	0.989			1
Chloromethane		0.732	0.200		1.51	0.413			1
Freon-114		ND	0.200		ND	1.40			1
1,3-Butadiene		ND	0.200		ND	0.442			1
Bromomethane		ND	0.200		ND	0.777			1
Chloroethane		ND	0.200		ND	0.528			1
Ethanol		83.4	5.00		157	9.42			1
Vinyl bromide		ND	0.200		ND	0.874			1
Acetone		14.4	1.00		34.2	2.38			1
Trichlorofluoromethane		0.246	0.200		1.38	1.12			1
Isopropanol		5.54	0.500		13.6	1.23			1
Tertiary butyl Alcohol		0.605	0.500		1.83	1.52			1
Methylene chloride		0.664	0.500		2.31	1.74			1
3-Chloropropene		ND	0.200		ND	0.626			1
Carbon disulfide		ND	0.200		ND	0.623			1
Freon-113		ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene		ND	0.200		ND	0.793			1
1,1-Dichloroethane		ND	0.200		ND	0.809			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
2-Butanone		0.616	0.500		1.82	1.47			1
Ethyl Acetate		0.741	0.500		2.67	1.80			1
Chloroform		ND	0.200		ND	0.977			1
Tetrahydrofuran		ND	0.500		ND	1.47			1
1,2-Dichloroethane		ND	0.200		ND	0.809			1

 Lab Number:
 L1726012

 Report Date:
 08/02/17

SAMPLE RESULTS

Lab ID: L1726012-06

Client ID: IA-3

Sample Location: 145 MARCUS BLVD

Date Collected: 07/26/17 16:20

Date Received: 07/27/17
Field Prep: Not Specified

Campic Location. 140 WATE	JOO DE VD			ricia ricp.			Not Opecin			
		ppbV			ug/m3			Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor		
Volatile Organics in Air - Mansfi	eld Lab									
n-Hexane	ND	0.200		ND	0.705			1		
Benzene	ND	0.200		ND	0.639			1		
Cyclohexane	ND	0.200		ND	0.688			1		
1,2-Dichloropropane	ND	0.200		ND	0.924			1		
Bromodichloromethane	ND	0.200		ND	1.34			1		
1,4-Dioxane	ND	0.200		ND	0.721			1		
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1		
Heptane	ND	0.200		ND	0.820			1		
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1		
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1		
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1		
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1		
Toluene	0.742	0.200		2.80	0.754			1		
2-Hexanone	ND	0.200		ND	0.820			1		
Dibromochloromethane	ND	0.200		ND	1.70			1		
1,2-Dibromoethane	ND	0.200		ND	1.54			1		
Chlorobenzene	ND	0.200		ND	0.921			1		
Ethylbenzene	ND	0.200		ND	0.869			1		
o/m-Xylene	ND	0.400		ND	1.74			1		
Bromoform	ND	0.200		ND	2.07			1		
Styrene	ND	0.200		ND	0.852			1		
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1		
o-Xylene	ND	0.200		ND	0.869			1		
4-Ethyltoluene	ND	0.200		ND	0.983			1		
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1		
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1		
Benzyl chloride	ND	0.200		ND	1.04			1		
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1		

Lab Number:

L1726012

Report Date:

08/02/17

SAMPLE RESULTS

Lab ID: L1726012-06

IA-3

Client ID: Sample Location: 145 MARCUS BLVD Date Collected:

07/26/17 16:20

Date Received:

07/27/17

Field Prep:

Not Specified

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	85		60-140
Bromochloromethane	88		60-140
chlorobenzene-d5	76		60-140

Date Received:

Field Prep:

07/26/17 16:20

Not Specified

07/27/17

Project Name:MAR1601Lab Number:L1726012Project Number:MAR1601Report Date:08/02/17

SAMPLE RESULTS

Lab ID: L1726012-06 Date Collected:

Client ID: IA-3

Sample Location: 145 MARCUS BLVD

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 07/29/17 22:32

Analyst: MB

Parameter		ppbV			ug/m3			Dilution
	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	M - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.078	0.020		0.491	0.126			1
Trichloroethene	0.114	0.020		0.613	0.107			1
Tetrachloroethene	0.062	0.020		0.420	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	89		60-140
chlorobenzene-d5	84		60-140

SAMPLE RESULTS

Lab ID: L1726012-07

Client ID: IA-5

Sample Location: 145 MARCUS BLVD

Matrix: Air
Anaytical Method: 48,TO-15
Analytical Date: 07/29/17 23:07

Analyst: MB

Date Collected:	07/26/17 16:15
Date Received:	07/27/17
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.337	0.200		1.67	0.989			1
Chloromethane	0.714	0.200		1.47	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	36.4	5.00		68.6	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	10.8	1.00		25.7	2.38			1
Trichlorofluoromethane	0.218	0.200		1.23	1.12			1
Isopropanol	3.06	0.500		7.52	1.23			1
Tertiary butyl Alcohol	0.547	0.500		1.66	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	0.595	0.500		2.14	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

08/02/17

Project Name: MAR1601 Project Number: MAR1601

Lab Number: L1726012 Report Date:

SAMPLE RESULTS

Lab ID: L1726012-07

Client ID: IA-5

Sample Location: 145 MARCUS BLVD

07/26/17 16:15 Date Collected:

Date Received: 07/27/17 Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	field Lab							
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.361	0.200		1.36	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1

Lab Number:

L1726012

Report Date:

08/02/17

SAMPLE RESULTS

Lab ID: L1726012-07

Date Collected:

07/26/17 16:15

Client ID: IA-5

Date Received: Field Prep:

07/27/17

Sample Location: 145

145 MARCUS BLVD

Not Specified

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	85		60-140
Bromochloromethane	87		60-140
chlorobenzene-d5	75		60-140

SAMPLE RESULTS

Lab ID: L1726012-07

Client ID: IA-5

Sample Location: 145 MARCUS BLVD

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 07/29/17 23:07

Analyst: MB

Date Collected: 07/26/17 16:15 Date Received: 07/27/17

Field Prep: Not Specified

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	l - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.077	0.020		0.484	0.126			1
Trichloroethene	0.033	0.020		0.177	0.107			1
Tetrachloroethene	0.048	0.020		0.325	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria		
1,4-difluorobenzene	85		60-140		
bromochloromethane	90		60-140		
chlorobenzene-d5	82		60-140		

Project Name: Lab Number: MAR1601 L1726012 Project Number: MAR1601

Report Date: 08/02/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/29/17 14:35

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 02-	07 Batch:	WG10270	96-4			
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Name: Lab Number: MAR1601 L1726012 Project Number: MAR1601

Report Date: 08/02/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/29/17 14:35

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 02-	07 Batch:	WG10270	96-4			
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Chlorobenzene	ND	0.200		ND	0.921			

Project Name: MAR1601 Lab Number: L1726012

Project Number: MAR1601 Report Date: 08/02/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 07/29/17 14:35

		ppbV			ug/m3		_	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for samp	ole(s): 02-	07 Batch	n: WG10270	96-4			
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: MAR1601 L1726012 Project Number: MAR1601

Report Date: 08/02/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 07/29/17 15:12

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	ansfield Lab f	or sample	(s): 03-07	Batch: W	G102709	7-4		
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1

Project Name: Lab Number: MAR1601 L1726012 Project Number: MAR1601

Report Date: 08/02/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 07/29/17 15:12

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab fo	or sample	(s): 03-07	Batch: W	G102709	7-4		
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.020		ND	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Cyclohexane	ND	0.200		ND	0.688			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.020		ND	0.170			1

Project Name: Lab Number: MAR1601 L1726012 Project Number: MAR1601

Report Date: 08/02/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 07/29/17 15:12

Parameter	Results						Dilution	
		RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	ansfield Lab fo	or sample	(s): 03-07	Batch: W	G102709	7-4		
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
1,2,3-Trichloropropane	ND	0.020		ND	0.121			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1

Project Name: MAR1601 Lab Number: L1726012

Project Number: MAR1601 Report Date: 08/02/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 07/29/17 15:12

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mans	sfield Lab fo	or sample	(s): 03-07	Batch: W	G102709	7-4		
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Project Name: MAR1601
Project Number: MAR1601

Lab Number: L1726012

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	02-07	Batch: WG102709	96-3				
Chlorodifluoromethane	94		-		70-130	-		
Propylene	119		-		70-130	-		
Propane	91		-		70-130	-		
Dichlorodifluoromethane	91		-		70-130	-		
Chloromethane	114		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	108		-		70-130	-		
Methanol	108		-		70-130	-		
Vinyl chloride	109		-		70-130	-		
1,3-Butadiene	115		-		70-130	-		
Butane	101		-		70-130	-		
Bromomethane	101		-		70-130	-		
Chloroethane	106		-		70-130	-		
Ethyl Alcohol	110		-		70-130	-		
Dichlorofluoromethane	98		-		70-130	-		
Vinyl bromide	98		-		70-130	-		
Acrolein	101		-		70-130	-		
Acetone	113		-		70-130	-		
Acetonitrile	110		-		70-130	-		
Trichlorofluoromethane	102		-		70-130	-		
iso-Propyl Alcohol	115		-		70-130	-		
Acrylonitrile	98		-		70-130	-		
Pentane	105		-		70-130	-		
Ethyl ether	108		-		70-130	-		

Project Name: MAR1601
Project Number: MAR1601

Lab Number: L1726012

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	02-07	Batch: WG102709	06-3				
1,1-Dichloroethene	106		-		70-130	-		
tert-Butyl Alcohol	93		-		70-130	-		
Methylene chloride	114		-		70-130	-		
3-Chloropropene	119		-		70-130	-		
Carbon disulfide	101		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	103		-		70-130	-		
trans-1,2-Dichloroethene	85		-		70-130	-		
1,1-Dichloroethane	90		-		70-130	-		
Methyl tert butyl ether	83		-		70-130	-		
Vinyl acetate	128		-		70-130	-		
2-Butanone	97		-		70-130	-		
cis-1,2-Dichloroethene	97		-		70-130	-		
Ethyl Acetate	101		-		70-130	-		
Chloroform	95		-		70-130	-		
Tetrahydrofuran	93		-		70-130	-		
2,2-Dichloropropane	82		-		70-130	-		
1,2-Dichloroethane	95		-		70-130	-		
n-Hexane	112		-		70-130	-		
Isopropyl Ether	99		-		70-130	-		
Ethyl-Tert-Butyl-Ether	95		-		70-130	-		
1,1,1-Trichloroethane	103		-		70-130	-		
1,1-Dichloropropene	100		-		70-130	-		
Benzene	106		-		70-130	-		

Project Name: MAR1601
Project Number: MAR1601

Lab Number: L1726012

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Ass	sociated sample(s)	02-07	Batch: WG102709	96-3				
Carbon tetrachloride	104		-		70-130	-		
Cyclohexane	109		-		70-130	-		
Tertiary-Amyl Methyl Ether	88		-		70-130	-		
Dibromomethane	98		-		70-130	-		
1,2-Dichloropropane	112		-		70-130	-		
Bromodichloromethane	109		-		70-130	-		
1,4-Dioxane	108		-		70-130	-		
Trichloroethene	106		-		70-130	-		
2,2,4-Trimethylpentane	112		-		70-130	•		
Methyl Methacrylate	116		-		70-130	-		
Heptane	114		-		70-130	-		
cis-1,3-Dichloropropene	112		-		70-130	-		
4-Methyl-2-pentanone	113		-		70-130	-		
trans-1,3-Dichloropropene	96		-		70-130	-		
1,1,2-Trichloroethane	109		-		70-130	-		
Toluene	99		-		70-130	-		
1,3-Dichloropropane	92		-		70-130	-		
2-Hexanone	100		-		70-130	-		
Dibromochloromethane	103		-		70-130	-		
1,2-Dibromoethane	99		-		70-130	-		
Butyl Acetate	77		-		70-130	-		
Octane	89		-		70-130	-		
Tetrachloroethene	99		-		70-130	-		

Project Name: MAR1601
Project Number: MAR1601

Lab Number: L1726012

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab A	ssociated sample(s):	02-07	Batch: WG102709	6-3				
1,1,1,2-Tetrachloroethane	92		-		70-130	-		
Chlorobenzene	100		-		70-130	-		
Ethylbenzene	99		-		70-130	-		
p/m-Xylene	99		-		70-130	-		
Bromoform	105		-		70-130	-		
Styrene	101		-		70-130	-		
1,1,2,2-Tetrachloroethane	112		-		70-130	-		
o-Xylene	106		-		70-130	-		
1,2,3-Trichloropropane	96		-		70-130	-		
Nonane (C9)	100		-		70-130	-		
Isopropylbenzene	99		-		70-130	-		
Bromobenzene	94		-		70-130	-		
o-Chlorotoluene	95		-		70-130	-		
n-Propylbenzene	100		-		70-130	-		
p-Chlorotoluene	92		-		70-130	-		
4-Ethyltoluene	96		-		70-130	-		
1,3,5-Trimethylbenzene	111		-		70-130	-		
tert-Butylbenzene	105		-		70-130	-		
1,2,4-Trimethylbenzene	113		-		70-130	-		
Decane (C10)	104		-		70-130	-		
Benzyl chloride	104		-		70-130	-		
1,3-Dichlorobenzene	109		-		70-130	-		
1,4-Dichlorobenzene	110		-		70-130	-		

Project Name: MAR1601
Project Number: MAR1601

Lab Number:

L1726012

Report Date:

08/02/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air - Mansfield Lab Ass	sociated sample(s):	02-07	Batch: WG1027	7096-3					
sec-Butylbenzene	105		-		70-130	-			
p-Isopropyltoluene	93		-		70-130	-			
1,2-Dichlorobenzene	110		-		70-130	-			
n-Butylbenzene	107		-		70-130	-			
1,2-Dibromo-3-chloropropane	92		-		70-130	-			
Undecane	112		-		70-130	-			
Dodecane (C12)	114		-		70-130	-			
1,2,4-Trichlorobenzene	118		-		70-130	-			
Naphthalene	101		-		70-130	-			
1,2,3-Trichlorobenzene	109		-		70-130	-			
Hexachlorobutadiene	114		-		70-130	-			

Project Name: MAR1601
Project Number: MAR1601

Lab Number: L1726012

arameter	LCS %Recovery	LCSD Qual %Recover	%Recover ry Qual Limits	y RPD	RPD Qual Limits	
olatile Organics in Air by SIM - Mansfield	d Lab Associated sa	mple(s): 03-07 Batch:	WG1027097-3			
Propylene	111	-	70-130	-	25	
Dichlorodifluoromethane	97	-	70-130	-	25	
Chloromethane	111	-	70-130	-	25	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	106	-	70-130	-	25	
Vinyl chloride	107	-	70-130	-	25	
1,3-Butadiene	112	-	70-130	-	25	
Bromomethane	104	-	70-130	-	25	
Chloroethane	106	-	70-130	-	25	
Ethyl Alcohol	108	-	70-130	-	25	
Vinyl bromide	99	-	70-130	-	25	
Acetone	106	-	70-130	-	25	
Trichlorofluoromethane	103	-	70-130	-	25	
iso-Propyl Alcohol	118	-	70-130	-	25	
Acrylonitrile	104	-	70-130	-	25	
1,1-Dichloroethene	105	-	70-130	-	25	
tert-Butyl Alcohol ¹	92	-	70-130	-	25	
Methylene chloride	116	-	70-130	-	25	
3-Chloropropene	115	-	70-130	-	25	
Carbon disulfide	100	-	70-130	-	25	
1,1,2-Trichloro-1,2,2-Trifluoroethane	104	-	70-130	-	25	
Halothane	120	-	70-130	-	25	
trans-1,2-Dichloroethene	113	-	70-130	-	25	
1,1-Dichloroethane	125	-	70-130	-	25	

Project Name: MAR1601
Project Number: MAR1601

Lab Number: L1726012

arameter	LCS %Recovery Qu	LCSD ual %Recovery Qu	%Recovery ual Limits	RPD	RPD Qual Limits
olatile Organics in Air by SIM - Mansfield	Lab Associated sample	e(s): 03-07 Batch: WG1027	097-3		
Methyl tert butyl ether	93	-	70-130	-	25
Vinyl acetate	121	-	70-130	-	25
2-Butanone	95	-	70-130	-	25
cis-1,2-Dichloroethene	92	-	70-130	-	25
Ethyl Acetate	100	-	70-130	-	25
Chloroform	96	-	70-130	-	25
Tetrahydrofuran	93	-	70-130	-	25
1,2-Dichloroethane	90	-	70-130	-	25
n-Hexane	105	-	70-130	-	25
1,1,1-Trichloroethane	102	-	70-130	-	25
Benzene	101	-	70-130	-	25
Carbon tetrachloride	105	•	70-130	-	25
Cyclohexane	102	•	70-130	-	25
Dibromomethane ¹	89	-	70-130	-	25
1,2-Dichloropropane	109	-	70-130	-	25
Bromodichloromethane	108	-	70-130	-	25
1,4-Dioxane	105	-	70-130	-	25
Trichloroethene	99	-	70-130	-	25
2,2,4-Trimethylpentane	109	-	70-130	-	25
cis-1,3-Dichloropropene	108	-	70-130	-	25
4-Methyl-2-pentanone	110	-	70-130	-	25
trans-1,3-Dichloropropene	90	-	70-130	-	25
1,1,2-Trichloroethane	108	-	70-130	-	25

Project Name: MAR1601
Project Number: MAR1601

Lab Number: L1726012

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
olatile Organics in Air by SIM - Mansfie	eld Lab Associated sa	ample(s): 03-07 Batch: W0	G1027097-3		
Toluene	98	-	70-130	-	25
2-Hexanone	95	•	70-130	-	25
Dibromochloromethane	108	-	70-130	-	25
1,2-Dibromoethane	105	-	70-130	-	25
Tetrachloroethene	93	•	70-130	-	25
1,1,1,2-Tetrachloroethane	97	-	70-130	-	25
Chlorobenzene	103	-	70-130	-	25
Ethylbenzene	99	-	70-130	-	25
p/m-Xylene	102	-	70-130	-	25
Bromoform	105	-	70-130	-	25
Styrene	101	-	70-130	-	25
1,1,2,2-Tetrachloroethane	114	-	70-130	-	25
o-Xylene	103	-	70-130	-	25
1,2,3-Trichloropropane ¹	101	-	70-130	-	25
Isopropylbenzene	98	-	70-130	-	25
Bromobenzene ¹	97	-	70-130	-	25
4-Ethyltoluene	107	-	70-130	-	25
1,3,5-Trimethylbenzene	108	-	70-130	-	25
1,2,4-Trimethylbenzene	116	-	70-130	-	25
Benzyl chloride	102	-	70-130	-	25
1,3-Dichlorobenzene	115		70-130	-	25
1,4-Dichlorobenzene	113		70-130	-	25
sec-Butylbenzene	101	-	70-130	-	25

Project Name: MAR1601
Project Number: MAR1601

Lab Number: L1726012

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lab	o Associated sa	ample(s):	03-07 Batch: WC	91027097-3	3				
p-Isopropyltoluene	93		-		70-130	-		25	
1,2-Dichlorobenzene	114		-		70-130	-		25	
n-Butylbenzene	107		-		70-130	-		25	
1,2,4-Trichlorobenzene	127		-		70-130	-		25	
Naphthalene	99		-		70-130	-		25	
1,2,3-Trichlorobenzene	114		-		70-130	-		25	
Hexachlorobutadiene	117		-		70-130	-		25	

Lab Duplicate Analysis Batch Quality Control

Project Name: MAR1601
Project Number: MAR1601

Lab Number: L1726012

Report Date: 08/02/17

RPD Native Sample Duplicate Sample Units RPD Qual Limits **Parameter** Volatile Organics in Air - Mansfield Lab Associated sample(s): 02-07 QC Batch ID: WG1027096-5 QC Sample: L1726012-03 Client ID: IA-4 Dichlorodifluoromethane 0.336 0.366 ppbV 9 25 25 Chloromethane 0.704 0.735 ppbV Freon-114 ND ND NC 25 ppbV ND NC 25 1.3-Butadiene ND ppbV Bromomethane ND ND NC 25 Vdqq Chloroethane ND ND ppbV NC 25 4 25 Ethanol 42.0 40.5 ppbV Vinyl bromide ND ND NC 25 ppbV 1 25 Acetone 13.4 13.3 ppbV Trichlorofluoromethane 0.274 25 0.255 ppbV 7 Isopropanol 18.7 18.2 Vdqq 3 25 Tertiary butyl Alcohol 8 25 0.701 0.647 ppbV Methylene chloride ND ND ppbV NC 25 3-Chloropropene ND NC 25 ND ppbV Carbon disulfide ND NC 25 ND ppbV Freon-113 ND ND ppbV NC 25 trans-1.2-Dichloroethene ND NC 25 ND ppbV ND NC 25 1.1-Dichloroethane ND Vdqq Methyl tert butyl ether ND ND NC 25 ppbV 0.510 0.529 4 25 2-Butanone ppbV Ethyl Acetate ND 0.528 ppbV NC 25

Lab Duplicate Analysis Batch Quality Control

Project Name: MAR1601 **Project Number:** MAR1601

Lab Number: L1726012 **Report Date:** 08/02/17

Parameter	Native Sample	Duplicate Sample	Units	RPD		RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 02-07	QC Batch ID: WG1027096-5	QC Sample:	L1726012-03	Client ID:	IA-4
Chloroform	ND	ND	ppbV	NC		25
Tetrahydrofuran	ND	ND	ppbV	NC		25
1,2-Dichloroethane	ND	ND	ppbV	NC		25
n-Hexane	ND	ND	ppbV	NC		25
Benzene	ND	ND	ppbV	NC		25
Cyclohexane	ND	ND	ppbV	NC		25
1,2-Dichloropropane	ND	ND	ppbV	NC		25
Bromodichloromethane	ND	ND	ppbV	NC		25
1,4-Dioxane	ND	ND	ppbV	NC		25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC		25
Heptane	0.962	0.934	ppbV	3		25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC		25
4-Methyl-2-pentanone	ND	ND	ppbV	NC		25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC		25
1,1,2-Trichloroethane	ND	ND	ppbV	NC		25
Toluene	0.358	0.375	ppbV	5		25
2-Hexanone	ND	ND	ppbV	NC		25
Dibromochloromethane	ND	ND	ppbV	NC		25
1,2-Dibromoethane	ND	ND	ppbV	NC		25
Chlorobenzene	ND	ND	ppbV	NC		25
Ethylbenzene	ND	ND	ppbV	NC		25

Lab Duplicate Analysis Batch Quality Control

Project Name: MAR1601 **Project Number:** MAR1601

Lab Number:

L1726012

Report Date:

08/02/17

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
olatile Organics in Air - Mansfield Lab Asso	ciated sample(s): 02-07	QC Batch ID: WG1027096-	5 QC Sai	mple: L1726012-	-03 Client ID: IA-4
p/m-Xylene	ND	ND	ppbV	NC	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	ND	ND	ppbV	NC	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25
Benzyl chloride	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
olatile Organics in Air by SIM - Mansfield La	b Associated sample(s):	03-07 QC Batch ID: WG1	027097-5	QC Sample: L1	726012-03 Client ID: IA-4
Vinyl chloride	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Carbon tetrachloride	0.076	0.079	ppbV	4	25
Trichloroethene	ND	ND	ppbV	NC	25
Tetrachloroethene	ND	ND	ppbV	NC	25

Lab Number: L1726012

Report Date: 08/02/17

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Pressure (in. Hg)	on Receipt (in. Hg)	Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1726012-01	SVE-SOUTH (INF)	0744	Flow 3	07/24/17	245751		-	-	-	Pass	17.8	19.3	8
L1726012-01	SVE-SOUTH (INF)	523	2.7L Can	07/24/17	245751	L1724633-01	Pass	-29.3	-28.7	-	-	-	-
L1726012-02	SVE-NORTH (INF)	0310	Flow 5	07/24/17	245751		-	-	-	Pass	17.6	16.4	7
L1726012-02	SVE-NORTH (INF)	541	2.7L Can	07/24/17	245751	L1724633-01	Pass	-29.3	0.7	-	-	-	-
L1726012-03	IA-4	0364	Flow 5	07/24/17	245751		-	-	-	Pass	4.3	4.4	2
L1726012-03	IA-4	551	2.7L Can	07/24/17	245751	L1724633-01	Pass	-29.3	-8.7	-	-	-	-
L1726012-04	IA-2	0186	Flow 3	07/24/17	245751		-	-	-	Pass	4.5	5.0	11
L1726012-04	IA-2	2238	2.7L Can	07/24/17	245751	L1724633-01	Pass	-29.4	-4.4	-	-	-	-
L1726012-05	IA-8	0089	Flow 5	07/24/17	245751		-	-	-	Pass	4.4	4.8	9
L1726012-05	IA-8	149	2.7L Can	07/24/17	245751	L1724633-01	Pass	-29.3	-6.3	-	-	-	-
L1726012-06	IA-3	0012	Flow 5	07/24/17	245751		-	-	-	Pass	4.5	4.6	2
L1726012-06	IA-3	2343	2.7L CAN	07/24/17	245751	L1724633-01	Pass	-28.6	-5.7	-	-	-	-
L1726012-07	IA-5	0201	Flow 5	07/24/17	245751		-	-	-	Pass	4.3	4.5	5
L1726012-07	IA-5	126	2.7L Can	07/24/17	245751	L1724633-01	Pass	-29.5	-7.3	-	-	-	

Project Name:

Project Number:

MAR1601

MAR1601

L1724633

Not Specified

Lab Number:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 08/02/17

Air Canister Certification Results

Lab ID: L1724633-01

Date Collected: 07/18/17 16:00 Client ID: **CAN 238 SHELF 14** Date Received: 07/19/17

Sample Location:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 07/19/17 19:31

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
sopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

L1724633

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 08/02/17

Air Canister Certification Results

Lab ID: L1724633-01 Date Collected: 07/18/17 16:00

Client ID: CAN 238 SHELF 14 Date Received: 07/19/17

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

L1724633

07/18/17 16:00

Lab Number:

Date Collected:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 08/02/17

Air Canister Certification Results

Lab ID: L1724633-01

Client ID: CAN 238 SHELF 14 Date Received: 07/19/17

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Lab Number:

L1724633

Report Date: 08/02/17

Air Canister Certification Results

Lab ID: L1724633-01

Client ID: CAN 238 SHELF 14

Sample Location:

Date Collected:

07/18/17 16:00

Date Received:

07/19/17

Field Prep:

Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1724633

Project Number: CANISTER QC BAT Report Date: 08/02/17

Air Canister Certification Results

Lab ID: L1724633-01 Date Collected: 07/18/17 16:00

Client ID: CAN 238 SHELF 14 Date Received: 07/19/17

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	88		60-140

L1724633

08/02/17

Not Specified

Lab Number:

Report Date:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Air Canister Certification Results

Lab ID: L1724633-01

Date Collected: 07/18/17 16:00 Client ID: Date Received: 07/19/17 CAN 238 SHELF 14

Sample Location:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 07/19/17 17:07

Analyst: MB

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.020		ND	0.053			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1724633

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 08/02/17

Air Canister Certification Results

Lab ID: L1724633-01

Client ID: **CAN 238 SHELF 14**

Sample Location:

Date Collected: 07/18/17 16:00 Date Received: 07/19/17

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1

Project Name: BATCH CANISTER CERTIFICATION

Lab Number:

L1724633

Project Number: CANISTER QC BAT

Report Date: 08/02/17

Air Canister Certification Results

Lab ID: L1724633-01

Date Collected:

07/18/17 16:00

Client ID:

CAN 238 SHELF 14

Date Received:

07/19/17

Sample Location:

Field Prep:

Not Specified

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	91		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	90		60-140

Lab Number: L1726012

Report Date: 08/02/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Project Number: MAR1601

CoolerCustody SealN/APresent/Intact

MAR1601

Container Info	rmation		Initial	Final	Temp			Frozen		
Container ID	D Container Type		рH	рН	deg C Pres		Seal	Date/Time	Analysis(*)	
L1726012-01A	Canister - 2.7 Liter	N/A	N/A	N/A		Υ	Absent		CANCELLED()	
L1726012-02A	Canister - 2.7 Liter	N/A	N/A	N/A		Υ	Absent		TO15-LL(30)	
L1726012-03A	Canister - 2.7 Liter	N/A	N/A	N/A		Υ	Absent		TO15-LL(30),TO15-SIM(30)	
L1726012-04A	Canister - 2.7 Liter	N/A	N/A	N/A		Υ	Absent		TO15-LL(30),TO15-SIM(30)	
L1726012-05A	Canister - 2.7 Liter	N/A	N/A	N/A		Υ	Absent		TO15-LL(30),TO15-SIM(30)	
L1726012-06A	Canister - 2.7 Liter	N/A	N/A	N/A		Υ	Absent		TO15-LL(30),TO15-SIM(30)	
L1726012-07A	Canister - 2.7 Liter	N/A	N/A	N/A		Υ	Absent		TO15-LL(30),TO15-SIM(30)	

Project Name:MAR1601Lab Number:L1726012Project Number:MAR1601Report Date:08/02/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:MAR1601Lab Number:L1726012Project Number:MAR1601Report Date:08/02/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:MAR1601Lab Number:L1726012Project Number:MAR1601Report Date:08/02/17

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Revision 10

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide
EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS **EPA 3005A** NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

ANALYTICAL REPORT

Lab Number: L1726929

Client: P. W. Grosser

630 Johnson Avenue

Suite 7

Bohemia, NY 11716

ATTN: Thomas Melia Phone: (631) 589-6353

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701 Report Date: 08/10/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), NJ NELAP (MA015), CT (PH-0141), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-13-00067), USFWS (Permit #LE2069641).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1726929

Report Date:

08/10/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1726929-01	SVE-SOUTH (INF)	SOIL_VAPOR	145 MARCUS BLVD, HAUPPAUGE, NY	08/02/17 13:30	08/03/17

L1726929

Lab Number:

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701 Report Date: 08/10/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: COMPUTER CIRCUITS Lab Number: L1726929

Project Number: MAR1701 Report Date: 08/10/17

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on August 2, 2017. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Christopher J. Anderson

Title: Technical Director/Representative Date: 08/10/17

ALPHA

AIR

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1726929

Report Date:

08/10/17

SAMPLE RESULTS

Lab ID: L1726929-01

Client ID: SVE-SOUTH (INF)

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 08/07/17 18:49

Analyst: MB

Date Collected:	08/02/17 13:30
Date Received:	08/03/17

Field Prep: Not Specified

	ppbV ug/m3						Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.346	0.200		1.71	0.989			1
Chloromethane	0.603	0.200		1.25	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	23.5	5.00		44.3	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	60.7	1.00		144	2.38			1
Trichlorofluoromethane	0.232	0.200		1.30	1.12			1
Isopropanol	4.34	0.500		10.7	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	0.676	0.500		2.35	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	11.3	0.500		33.3	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1726929

Report Date:

08/10/17

SAMPLE RESULTS

Lab ID: L1726929-01

Client ID: SVE-SOUTH (INF)

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Date Collected:

08/02/17 13:30

Date Received:

08/03/17

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	0.288	0.200		0.920	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	2.96	0.200		15.9	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	0.831	0.500		3.41	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.347	0.200		1.31	0.754			1
2-Hexanone	5.00	0.200		20.5	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	0.571	0.200		3.87	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1

Project Name: **COMPUTER CIRCUITS**

Project Number: MAR1701 Lab Number:

L1726929

Report Date:

08/10/17

SAMPLE RESULTS

Lab ID: L1726929-01

SVE-SOUTH (INF)

Client ID: Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Date Collected:

08/02/17 13:30

Date Received:

08/03/17

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	nsfield Lab							
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	91		60-140
Bromochloromethane	89		60-140
chlorobenzene-d5	85		60-140

Project Name: COMPUTER CIRCUITS Lab Number: L1726929

Project Number: MAR1701 Report Date: 08/10/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/07/17 16:08

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	Batch:	WG1029650-4	1			
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Name: COMPUTER CIRCUITS Lab Number: L1726929

Project Number: MAR1701 Report Date: 08/10/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/07/17 16:08

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	ield Lab for samp	ole(s): 01	Batch:	WG1029650-	4			
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1

L1726929

Lab Number:

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701 Report Date: 08/10/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 08/07/17 16:08

ppbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Lab for samp	ole(s): 01	Batch:	WG1029650-	4			
ND	0.200		ND	0.869			1
ND	0.400		ND	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	ND N	Results RL Lab for sample(s): 01 ND 0.200 ND 0.400 ND 0.200 ND 0.200	Results RL MDL Lab for sample(s): 01 Batch: ND 0.200 ND 0.400 ND 0.200 ND 0.200 <	Results RL MDL Results Lab for sample(s): 01 Batch: WG1029650- ND 0.200 ND ND 0.400 ND ND 0.200 ND	Results RL MDL Results RL Lab for sample(s): 01 Batch: WG1029650-4 ND 0.869 ND 0.200 ND 0.869 ND 0.400 ND 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200	Results RL MDL Results RL MDL Lab for sample(s): 01 Batch: WG1029650-4	Results RL MDL Results RL MDL Qualifier Lab for sample(s): 01 Batch: WG1029650-4

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1726929

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01 Batch:	WG1029650-3					
Chlorodifluoromethane	81		-		70-130	-		
Propylene	102		-		70-130	-		
Propane	94		-		70-130	-		
Dichlorodifluoromethane	70		-		70-130	-		
Chloromethane	100		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	93		-		70-130	-		
Methanol	110		-		70-130	-		
Vinyl chloride	95		-		70-130	-		
1,3-Butadiene	102		-		70-130	-		
Butane	108		-		70-130	-		
Bromomethane	92		-		70-130	-		
Chloroethane	94		-		70-130	-		
Ethyl Alcohol	116		-		70-130	-		
Dichlorofluoromethane	92		-		70-130	-		
Vinyl bromide	86		-		70-130	-		
Acrolein	93		-		70-130	-		
Acetone	117		-		70-130	-		
Acetonitrile	100		-		70-130	-		
Trichlorofluoromethane	96		-		70-130	-		
iso-Propyl Alcohol	112		-		70-130	-		
Acrylonitrile	100		-		70-130	-		
Pentane	102		-		70-130	-		
Ethyl ether	109		-		70-130	-		

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1726929

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
platile Organics in Air - Mansfield Lab As	sociated sample(s)	: 01 Batch	n: WG1029650-3					
1,1-Dichloroethene	100		-		70-130	-		
tert-Butyl Alcohol	92		-		70-130	-		
Methylene chloride	119		-		70-130	-		
3-Chloropropene	114		-		70-130	-		
Carbon disulfide	93		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	98		-		70-130	-		
trans-1,2-Dichloroethene	104		-		70-130	-		
1,1-Dichloroethane	108		-		70-130	-		
Methyl tert butyl ether	78		-		70-130	-		
Vinyl acetate	96		-		70-130	-		
2-Butanone	90		-		70-130	-		
cis-1,2-Dichloroethene	99		-		70-130	-		
Ethyl Acetate	96		-		70-130	-		
Chloroform	85		-		70-130	-		
Tetrahydrofuran	87		-		70-130	-		
2,2-Dichloropropane	74		-		70-130	-		
1,2-Dichloroethane	85		-		70-130	-		
n-Hexane	110		-		70-130	-		
Isopropyl Ether	92		-		70-130	-		
Ethyl-Tert-Butyl-Ether	97		-		70-130	-		
1,1,1-Trichloroethane	98		-		70-130	-		
1,1-Dichloropropene	96		-		70-130	-		
Benzene	102		-		70-130	-		

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1726929

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ociated sample(s)	: 01 Batch	n: WG1029650-3					
Carbon tetrachloride	98		-		70-130	-		
Cyclohexane	108		-		70-130	-		
Tertiary-Amyl Methyl Ether	92		-		70-130	-		
Dibromomethane	99		-		70-130	-		
1,2-Dichloropropane	112		-		70-130	-		
Bromodichloromethane	107		-		70-130	-		
1,4-Dioxane	103		-		70-130	-		
Trichloroethene	98		-		70-130	-		
2,2,4-Trimethylpentane	115		-		70-130	-		
Methyl Methacrylate	128		-		70-130	-		
Heptane	118		-		70-130	-		
cis-1,3-Dichloropropene	109		-		70-130	-		
4-Methyl-2-pentanone	124		-		70-130	-		
trans-1,3-Dichloropropene	92		-		70-130	-		
1,1,2-Trichloroethane	106		-		70-130	-		
Toluene	84		-		70-130	-		
1,3-Dichloropropane	84		-		70-130	-		
2-Hexanone	105		-		70-130	-		
Dibromochloromethane	88		-		70-130	-		
1,2-Dibromoethane	86		-		70-130	-		
Butyl Acetate	83		-		70-130	-		
Octane	77		-		70-130	-		
Tetrachloroethene	75		-		70-130	-		

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1726929

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab A	ssociated sample(s):	01 Batch	n: WG1029650-3					
1,1,1,2-Tetrachloroethane	79		-		70-130	-		
Chlorobenzene	85		-		70-130	-		
Ethylbenzene	86		-		70-130	-		
p/m-Xylene	88		-		70-130	-		
Bromoform	82		-		70-130	-		
Styrene	84		-		70-130	-		
1,1,2,2-Tetrachloroethane	100		-		70-130	-		
o-Xylene	92		-		70-130	-		
1,2,3-Trichloropropane	85		-		70-130	-		
Nonane (C9)	99		-		70-130	-		
Isopropylbenzene	81		-		70-130	-		
Bromobenzene	83		-		70-130	-		
o-Chlorotoluene	77		-		70-130	-		
n-Propylbenzene	79		-		70-130	-		
p-Chlorotoluene	79		-		70-130	-		
4-Ethyltoluene	84		-		70-130	-		
1,3,5-Trimethylbenzene	86		-		70-130	-		
tert-Butylbenzene	84		-		70-130	-		
1,2,4-Trimethylbenzene	95		-		70-130	-		
Decane (C10)	93		-		70-130	-		
Benzyl chloride	96		-		70-130	-		
1,3-Dichlorobenzene	84		-		70-130	-		
1,4-Dichlorobenzene	83		-		70-130	-		

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1726929

Report Date:

08/10/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Ass	ociated sample(s):	01 Batch	: WG1029650-3					
sec-Butylbenzene	84		-		70-130	-		
p-Isopropyltoluene	74		-		70-130	-		
1,2-Dichlorobenzene	83		-		70-130	-		
n-Butylbenzene	90		-		70-130	-		
1,2-Dibromo-3-chloropropane	90		-		70-130	-		
Undecane	97		-		70-130	-		
Dodecane (C12)	109		-		70-130	-		
1,2,4-Trichlorobenzene	89		-		70-130	-		
Naphthalene	80		-		70-130	-		
1,2,3-Trichlorobenzene	82		-		70-130	-		
Hexachlorobutadiene	77		-		70-130	-		

Lab Duplicate Analysis Batch Quality Control

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1

L1726929

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics in Air - Mansfield Lab		QC Batch ID: WG1029650-5			Client ID: SVE-SOUTH (INF)
Dichlorodifluoromethane	0.346	0.371	ppbV	7	25
Chloromethane	0.603	0.567	ppbV	6	25
Freon-114	ND	ND	ppbV	NC	25
Vinyl chloride	ND	ND	ppbV	NC	25
1,3-Butadiene	ND	ND	ppbV	NC	25
Bromomethane	ND	ND	ppbV	NC	25
Chloroethane	ND	ND	ppbV	NC	25
Ethanol	23.5	23.6	ppbV	0	25
Vinyl bromide	ND	ND	ppbV	NC	25
Acetone	60.7	61.2	ppbV	1	25
Trichlorofluoromethane	0.232	0.239	ppbV	3	25
Isopropanol	4.34	4.60	ppbV	6	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
Tertiary butyl Alcohol	ND	ND	ppbV	NC	25
Methylene chloride	0.676	0.803	ppbV	17	25
3-Chloropropene	ND	ND	ppbV	NC	25
Carbon disulfide	ND	ND	ppbV	NC	25
Freon-113	ND	ND	ppbV	NC	25
trans-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1-Dichloroethane	ND	ND	ppbV	NC	25
Methyl tert butyl ether	ND	ND	ppbV	NC	25

Lab Duplicate Analysis Batch Quality Control

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1726929

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	<u> </u>	Batch ID: WG1029650-5				SVE-SOUTH (INF)
2-Butanone	11.3	11.5	ppbV	2		25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC		25
Ethyl Acetate	ND	ND	ppbV	NC		25
Chloroform	ND	ND	ppbV	NC		25
Tetrahydrofuran	ND	ND	ppbV	NC		25
1,2-Dichloroethane	ND	ND	ppbV	NC		25
n-Hexane	ND	ND	ppbV	NC		25
1,1,1-Trichloroethane	ND	ND	ppbV	NC		25
Benzene	0.288	0.276	ppbV	4		25
Carbon tetrachloride	ND	ND	ppbV	NC		25
Cyclohexane	ND	ND	ppbV	NC		25
1,2-Dichloropropane	ND	ND	ppbV	NC		25
Bromodichloromethane	ND	ND	ppbV	NC		25
1,4-Dioxane	ND	ND	ppbV	NC		25
Trichloroethene	2.96	3.01	ppbV	2		25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC		25
Heptane	ND	ND	ppbV	NC		25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC		25
4-Methyl-2-pentanone	0.831	0.718	ppbV	15		25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC		25
1,1,2-Trichloroethane	ND	ND	ppbV	NC		25

Lab Duplicate Analysis Batch Quality Control

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701 L1726929 08/10/17

Lab Number:

Report Date:

Parameter	Native Sampl	le Duplicate Sample	Units	RPD	RPD Qual Limits	
Volatile Organics in Air - Mansfield Lab		QC Batch ID: WG1029650-5			Client ID: SVE-SOUTH (IN	1F)
Toluene	0.347	0.348	ppbV	0	25	,
2-Hexanone	5.00	4.99	ppbV	0	25	
Dibromochloromethane	ND	ND	ppbV	NC	25	
1,2-Dibromoethane	ND	ND	ppbV	NC	25	
Tetrachloroethene	0.571	0.565	ppbV	1	25	
Chlorobenzene	ND	ND	ppbV	NC	25	
Ethylbenzene	ND	ND	ppbV	NC	25	
p/m-Xylene	ND	ND	ppbV	NC	25	
Bromoform	ND	ND	ppbV	NC	25	
Styrene	ND	ND	ppbV	NC	25	
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25	
o-Xylene	ND	ND	ppbV	NC	25	
4-Ethyltoluene	ND	ND	ppbV	NC	25	
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC	25	
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25	
Benzyl chloride	ND	ND	ppbV	NC	25	
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25	
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25	
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25	
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25	
Hexachlorobutadiene	ND	ND	ppbV	NC	25	

Lab Number: L1726929

Project Number: MAR1701 Report Date: 08/10/17

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk		Flow In mL/min	% RPD
L1726929-01	SVE-SOUTH (INF)	0883	SV200	08/02/17	246689		-	-	-	Pass	221	213	4
L1726929-01	SVE-SOUTH (INF)	2128	6.0L Can	08/02/17	246689	L1724305-01	Pass	-29.7	-6.7	-	-	-	-

Project Name:

COMPUTER CIRCUITS

Not Specified

Field Prep:

Project Name: Lab Number: L1724305

Project Number: CANISTER QC BAT Report Date: 08/10/17

Air Canister Certification Results

Lab ID: L1724305-01

Date Collected: 07/16/17 16:00 Client ID: CAN 1600 SHELF 55 Date Received: 07/17/17

Sample Location:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 07/17/17 16:22

Analyst: MB

		ppbV		ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
so-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
ert-Butyl Alcohol	ND	0.500		ND	1.52			1

Project Name: Lab Number: L1724305

Project Number: CANISTER QC BAT **Report Date:** 08/10/17

Air Canister Certification Results

Lab ID: L1724305-01

Date Collected: 07/16/17 16:00 Date Received: Client ID: CAN 1600 SHELF 55 07/17/17

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield I	Lab							
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
/inyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
sis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
etrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
,2-Dichloroethane	ND	0.200		ND	0.809			1
-Hexane	ND	0.200		ND	0.705			1
sopropyl Ether	ND	0.200		ND	0.836			1
Ethyl-Tert-Butyl-Ether	ND	0.200		ND	0.836			1
,1,1-Trichloroethane	ND	0.200		ND	1.09			1
,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
Fertiary-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1

Project Name: Lab Number: L1724305

Project Number: CANISTER QC BAT Report Date: 08/10/17

Air Canister Certification Results

Lab ID: L1724305-01

Client ID: CAN 1600 SHELF 55 Date Received: 07/

Sample Location:

Date Received: 07/17/17
Field Prep: Not Specified

07/16/17 16:00

Date Collected:

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl Acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane (C9)	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

Project Name: Lab Number: L1724305

CANISTER QC BAT **Project Number: Report Date:** 08/10/17

Air Canister Certification Results

Lab ID: L1724305-01

Client ID: CAN 1600 SHELF 55

Sample Location:

Date Collected: 07/16/17 16:00

Date Received: 07/17/17

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
o-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
p-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane (C10)	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane (C12)	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					
Terranively identified Compounds					

No Tentatively Identified Compounds

Project Name: Lab Number: L1724305

Project Number: CANISTER QC BAT **Report Date:** 08/10/17

Air Canister Certification Results

Lab ID: L1724305-01

Client ID: CAN 1600 SHELF 55 Date Received:

Sample Location:

Date Collected:

07/16/17 16:00

07/17/17

Field Prep: Not Specified

ppbV ug/m3 Dilution Factor Results RLMDL Qualifier **Parameter** Results RLMDL

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	97		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	98		60-140

Not Specified

Field Prep:

Project Name: Lab Number: L1724305

Project Number: CANISTER QC BAT Report Date: 08/10/17

Air Canister Certification Results

Lab ID: L1724305-01

Date Collected: 07/16/17 16:00 Client ID: CAN 1600 SHELF 55 Date Received: 07/17/17

Sample Location:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 07/17/17 16:22

Analyst: MB

		ppbV		ug/m3				Dilution	
Parameter Resu		Results RL M		Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM - Mar	sfield Lab								
Propylene	ND	0.500		ND	0.861			1	
Dichlorodifluoromethane	ND	0.200		ND	0.989			1	
Chloromethane	ND	0.200		ND	0.413			1	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1	
Vinyl chloride	ND	0.020		ND	0.051			1	
1,3-Butadiene	ND	0.020		ND	0.044			1	
Bromomethane	ND	0.020		ND	0.078			1	
Chloroethane	ND	0.020		ND	0.053			1	
Ethyl Alcohol	ND	5.00		ND	9.42			1	
Vinyl bromide	ND	0.200		ND	0.874			1	
Acetone	ND	1.00		ND	2.38			1	
Trichlorofluoromethane	ND	0.050		ND	0.281			1	
so-Propyl Alcohol	ND	0.500		ND	1.23			1	
Acrylonitrile	ND	0.500		ND	1.09			1	
1,1-Dichloroethene	ND	0.020		ND	0.079			1	
tert-Butyl Alcohol	ND	0.500		ND	1.52			1	
Methylene chloride	ND	0.500		ND	1.74			1	
3-Chloropropene	ND	0.200		ND	0.626			1	
Carbon disulfide	ND	0.200		ND	0.623			1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1	
Halothane	ND	0.050		ND	0.404			1	
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
1,1-Dichloroethane	ND	0.020		ND	0.081			1	
Methyl tert butyl ether	ND	0.200		ND	0.721			1	
Vinyl acetate	ND	1.00		ND	3.52			1	

Project Name: Lab Number: L1724305

Project Number: CANISTER QC BAT Report Date: 08/10/17

Air Canister Certification Results

Lab ID: L1724305-01

Client ID: CAN 1600 SHELF 55 Date Received: 07/17/17

Sample Location:

Field Prep: Not Specified

07/16/17 16:00

Date Collected:

		ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM	1 - Mansfield Lab								
2-Butanone	ND	0.500		ND	1.47			1	
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
Ethyl Acetate	ND	0.500		ND	1.80			1	
Chloroform	ND	0.020		ND	0.098			1	
Tetrahydrofuran	ND	0.500		ND	1.47			1	
1,2-Dichloroethane	ND	0.020		ND	0.081			1	
n-Hexane	ND	0.200		ND	0.705			1	
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1	
Benzene	ND	0.100		ND	0.319			1	
Carbon tetrachloride	ND	0.020		ND	0.126			1	
Cyclohexane	ND	0.200		ND	0.688			1	
Dibromomethane	ND	0.200		ND	1.42			1	
1,2-Dichloropropane	ND	0.020		ND	0.092			1	
Bromodichloromethane	ND	0.020		ND	0.134			1	
1,4-Dioxane	ND	0.100		ND	0.360			1	
Trichloroethene	ND	0.020		ND	0.107			1	
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1	
Heptane	ND	0.200		ND	0.820			1	
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1	
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1	
Toluene	ND	0.050		ND	0.188			1	
2-Hexanone	ND	0.200		ND	0.820			1	
Dibromochloromethane	ND	0.020		ND	0.170			1	
1,2-Dibromoethane	ND	0.020		ND	0.154			1	
Tetrachloroethene	ND	0.020		ND	0.136			1	
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1	

Project Name: Lab Number: L1724305

Project Number: CANISTER QC BAT Report Date: 08/10/17

Air Canister Certification Results

Lab ID: L1724305-01

Client ID: CAN 1600 SHELF 55

Sample Location:

Date Collected: 07/16/17 16:00 Date Received: 07/17/17

Field Prep: Not Specified

				/2		тот орос		
Parameter	Results	ppbV Results RL MDL			ug/m3 RL	Qualifier	Dilution Factor	
Volatile Organics in Air by SIM						MDL		
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
1,2,3-Trichloropropane	ND	0.020		ND	0.121			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
1-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	99		60-140
bromochloromethane	98		60-140

Lab Number: L1726929

Project Number: MAR1701 Report Date: 08/10/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

COMPUTER CIRCUITS

Cooler Information

Project Name:

Cooler Custody Seal

N/A Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C P	Pres	Seal	Date/Time	Analysis(*)
L1726929-01A	Canister - 6 Liter	N/A	NA			Υ	Absent		TO15-LL(30)

Project Name:COMPUTER CIRCUITSLab Number:L1726929Project Number:MAR1701Report Date:08/10/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:COMPUTER CIRCUITSLab Number:L1726929Project Number:MAR1701Report Date:08/10/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:COMPUTER CIRCUITSLab Number:L1726929Project Number:MAR1701Report Date:08/10/17

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 10

Published Date: 1/16/2017 11:00:05 AM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ALPHA	AIR A	NALYS	SIS P	PAGEO	OF	Date F	Rec'd in La	nb: 8	141	17		1	LPH	IA Jo	b #:	172	6920	1
320 Forbes Blvd, I	Mansfield, MA 02048	Project In				Repo	ort Inform	ation	Data	Deliver	ables		Billin	g Info	ormation			
TEL: 508-822-930	00 FAX: 508-822-3288	Project Nam	ne: Computes	- Circu	its	□FA	X					7	Sam	e as C	lient info	PO #:		
Client Informati	ion	Project Loca	ation: 145 Marcus	Rluck Has		MAD												
Client: PWGC		Project #:	MAR 1701	1	page	. NY	Criteria Ch (Default base		ulatory Cri	iteria Indica	ted)							
	Johnson Ave	Project Mana	ager: Thoma	m	110		Other Form	nats:							Domin		2000001111	
Bonemia,	NYIITIA	ALPHA Quo		is rile	114	Add	IAIL (stand ditional De	liverable	es:				tate/F		Progran		Report Lir	
Phone: 631 -	589-6353	Turn-Arou				Repor	Cated t to: (if differen	ory t than Project	ct Manager)			.			rogran		71007 001	
Fax:		Turii Arot	ana mne			451		,										
Email:		Standard	RUSH (only o	confirmed if pre-appro	ved!)													
Inomas	m@pwgroser.com	Data Dua												ANAL	LYSIS			
- Triese samples na	ave been previously analyzed by Alpha Specific Requirements/Comi	Date Due:		Time:		e films							//	0	12/			
	Target Compound List:											//	letter	7	0,70			
r roject opecine	rarget Compound List. L										/	//	on-petro	/ /glar	Sulls			
1	Α	II Colu	mns Bel	ow M	ust	Be F	Filled	10	ut			M	btract N	Merce	///			
ALPHA Lab ID (Lab Use Only)	Sample ID	1973	COLLECTION	N			Sampler's		ID	ID-Flow	70,75	10.15 SIM	Fixed Gar	Sulfides & Mercaptas				
6929-01			art Time End Time	THE OWNER OF TAXABLE PARTY.	THE RESERVE AND ADDRESS OF THE PARTY.	Matrix*	Initials	Size	Can	Controlle		0/4	14	700	Samp	le Comn	nents (i.e. F	ID)
6929-01	SVE-South (INF)	8-2-17 13	300 1330	-29.66 -	5,00	SV	KC		2129	0883	X							
												-		-			_	
							ration - P					bie						
								4 1154										
	No. 1 Personal Property of					-									+			
*SAMPLE	MATRIX CODES sv	= Soil Vapor/La ner = Please Spec		Total L			Co	ntainer	Туре						complet	tely. Samp	y, legibly and bles can not b around time	
	25	Relinquished	Ву:	Date/Ti	me	11	Receive	ed By:	1.		, [ate/T	ime:		clock wi	ill not start	until any aml	
orn Page 134 Fof: 34 -s	Sep-15)	March 19	Fill 1	9/3/17	12=2	fair	Such	se the	ela	\$	3/1	17	22	300	submitte Terms a	ed are subj and Conditi erse side.	ject to Alpha's	

ANALYTICAL REPORT

Lab Number: L1746905

Client: P. W. Grosser

630 Johnson Avenue

Suite 7

Bohemia, NY 11716

ATTN: Thomas Melia
Phone: (631) 589-6353

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701 Report Date: 12/28/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), NJ NELAP (MA015), CT (PH-0141), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-13-00067), USFWS (Permit #LE2069641).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date: 12/28/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1746905-01	SVE-SOUTH	SOIL_VAPOR	145 MARCUS BLVD, HAUPPAUGE, NY	12/19/17 10:35	12/20/17
L1746905-02	SVE-NORTH	SOIL_VAPOR	145 MARCUS BLVD, HAUPPAUGE, NY	12/19/17 10:15	12/20/17
L1746905-03	IA-4	AIR	145 MARCUS BLVD, HAUPPAUGE, NY	12/19/17 16:10	12/20/17
L1746905-04	IA-2	AIR	145 MARCUS BLVD, HAUPPAUGE, NY	12/19/17 16:16	12/20/17
L1746905-05	IA-8	AIR	145 MARCUS BLVD, HAUPPAUGE, NY	12/19/17 16:18	12/20/17
L1746905-06	IA-3	AIR	145 MARCUS BLVD, HAUPPAUGE, NY	12/19/17 16:19	12/20/17
L1746905-07	IA-5	AIR	145 MARCUS BLVD, HAUPPAUGE, NY	12/19/17 16:22	12/20/17

Serial_No:12281717:49

L1746905

Lab Number:

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701 Report Date: 12/28/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any guestions.

Serial_No:12281717:49

Project Name: COMPUTER CIRCUITS Lab Number: L1746905

Project Number: MAR1701 Report Date: 12/28/17

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on December 15, 2017. The canister certification results are provided as an addendum.

The WG1077047-3 LCS recoveries for 1,2,4-trichlorobenzene (136%) and hexachlorobutadiene (132%) are above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of these analytes.

The WG1077046-5 Laboratory Duplicate RPD for dichlorodifluoromethane (36%), performed on L1746905-05, is above the acceptance criteria; however, the sample and duplicate results are less than five times the reporting limit. Therefore, the RPD is valid.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Kara Soroko

Authorized Signature:

Title: Technical Director/Representative

Date: 12/28/17

AIR

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date:

Date Collected:

Date Received:

Field Prep:

12/28/17

12/20/17

12/19/17 10:35

Not Specified

SAMPLE RESULTS

Lab ID: L1746905-01 Client ID: SVE-SOUTH

Sample Location: 145 MARCUS

145 MARCUS BLVD, HAUPPAUGE, NY

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 12/28/17 01:42

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.401	0.200		1.98	0.989			1
Chloromethane	0.506	0.200		1.04	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	9.37	5.00		17.7	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.57	1.00		10.9	2.38			1
Trichlorofluoromethane	0.289	0.200		1.62	1.12			1
Isopropanol	1.77	0.500		4.35	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date: 12/28/17

SAMPLE RESULTS

Lab ID: L1746905-01

Client ID: SVE-SOUTH

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Date Collected:

12/19/17 10:35

Date Received:

12/20/17

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	0.255	0.200		0.815	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	0.753	0.200		4.05	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.390	0.200		1.47	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1

Project Name: **COMPUTER CIRCUITS**

Project Number: MAR1701 Lab Number:

L1746905

Report Date:

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-01 Client ID:

SVE-SOUTH

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY Date Collected:

12/19/17 10:35

Date Received:

12/20/17

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	76		60-140
Bromochloromethane	86		60-140
chlorobenzene-d5	76		60-140

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date:

Date Collected:

Date Received:

Field Prep:

12/28/17

12/19/17 10:15

Not Specified

12/20/17

SAMPLE RESULTS

Lab ID: L1746905-02

Client ID: SVE-NORTH

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 12/28/17 02:14

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	nsfield Lab							
Dichlorodifluoromethane	0.590	0.200		2.92	0.989			1
Chloromethane	0.265	0.200		0.547	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	6.32	1.00		15.0	2.38			1
Trichlorofluoromethane	0.424	0.200		2.38	1.12			1
Isopropanol	4.65	0.500		11.4	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	0.719	0.200		5.51	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	0.213	0.200		0.845	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date:

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-02

Client ID: SVE-NORTH

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Date Collected:

12/19/17 10:15

Date Received: Field Prep:

12/20/17

Not Specified

Campio Ecoation: 1 10 Min	1000 02 00, 117 10	00 02 00, 11/01 1 / 1002, 111			riola riop.			. tot opooni	
		ppbV			ug/m3		Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mans	sfield Lab								
Chloroform	ND	0.200		ND	0.977			1	
Tetrahydrofuran	ND	0.500		ND	1.47			1	
1,2-Dichloroethane	ND	0.200		ND	0.809			1	
n-Hexane	ND	0.200		ND	0.705			1	
1,1,1-Trichloroethane	0.676	0.200		3.69	1.09			1	
Benzene	ND	0.200		ND	0.639			1	
Carbon tetrachloride	ND	0.200		ND	1.26			1	
Cyclohexane	ND	0.200		ND	0.688			1	
,2-Dichloropropane	ND	0.200		ND	0.924			1	
Bromodichloromethane	ND	0.200		ND	1.34			1	
1,4-Dioxane	ND	0.200		ND	0.721			1	
Trichloroethene	8.98	0.200		48.3	1.07			1	
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1	
Heptane	ND	0.200		ND	0.820			1	
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1	
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1	
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1	
Γoluene	ND	0.200		ND	0.754			1	
2-Hexanone	ND	0.200		ND	0.820			1	
Dibromochloromethane	ND	0.200		ND	1.70			1	
1,2-Dibromoethane	ND	0.200		ND	1.54			1	
Tetrachloroethene	6.28	0.200		42.6	1.36			1	
Chlorobenzene	ND	0.200		ND	0.921			1	
Ethylbenzene	ND	0.200		ND	0.869			1	
n/m-Xylene	ND	0.400		ND	1.74			1	
Bromoform	ND	0.200		ND	2.07			1	
Styrene	ND	0.200		ND	0.852			1	

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date:

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-02

Client ID: SVE-NORTH
Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Date Collected:

12/19/17 10:15

Date Received:

12/20/17

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	nsfield Lab							
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	72		60-140
Bromochloromethane	84		60-140
chlorobenzene-d5	80		60-140

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date:

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-03

Client ID: IA-4

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Matrix:

Air

Anaytical Method: 48,TO-15 Analytical Date: 12/27/17 22:26

Analyst: RY

Date Collected:

12/19/17 16:10

Date Received:

12/20/17

Field Prep: Not Specified

ppbV ug/m3 **Dilution Factor** Results RL MDL Qualifier Results RLMDL **Parameter** Volatile Organics in Air - Mansfield Lab Dichlorodifluoromethane 0.398 0.200 1.97 0.989 1 Chloromethane 0.575 0.200 0.413 1 --1.19 --Freon-114 ND 0.200 ND 1.40 1 1,3-Butadiene ND 0.200 ND 1 --0.442 --Bromomethane ND 0.200 ND 0.777 1 ----Chloroethane ND 0.200 ND 0.528 1 Ethanol 33.5 5.00 63.1 9.42 1 Vinyl bromide ND 0.200 --ND 0.874 1 Acetone 9.72 1.00 --23.1 2.38 --1 Trichlorofluoromethane 0.390 0.200 2.19 1 1.12 --Isopropanol 54.4 0.500 134 1.23 1 Tertiary butyl Alcohol 0.566 0.500 1.72 1.52 --1 Methylene chloride ND 0.500 --ND 1.74 --1 3-Chloropropene ND 0.200 ND 0.626 1 Carbon disulfide ND 0.200 ND 0.623 1 ----Freon-113 ND 0.200 ND 1.53 1 trans-1,2-Dichloroethene ND 0.200 --ND 0.793 1 1,1-Dichloroethane ND 0.200 ND 0.809 1 ----Methyl tert butyl ether ND 0.200 ND 0.721 1 --2-Butanone ND 0.500 ND 1.47 1 ----Ethyl Acetate ND 0.500 ND 1.80 1 Chloroform ND 0.200 ND 0.977 1 Tetrahydrofuran ND 0.500 ND 1.47 1 ----1,2-Dichloroethane ND 0.200 ND 0.809 1

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date:

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-03

Client ID: IA-4

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Date Collected:

12/19/17 16:10

Date Received: Field Prep:

12/20/17

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.309	0.200		0.987	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	0.335	0.200		1.37	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.546	0.200		2.06	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date:

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-03

Date Collected:

12/19/17 16:10

Client ID: IA-4

Date Received:

12/20/17

Sample Location: 1

145 MARCUS BLVD, HAUPPAUGE, NY

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	ld Lab							
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	76		60-140
Bromochloromethane	85		60-140
chlorobenzene-d5	79		60-140

L1746905

Lab Number:

Project Name: **COMPUTER CIRCUITS**

Project Number: Report Date: MAR1701 12/28/17

SAMPLE RESULTS

Lab ID: Date Collected: L1746905-03 12/19/17 16:10

Client ID: IA-4 Date Received: 12/20/17

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY Field Prep: Not Specified

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 12/27/17 22:26

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.091	0.020		0.572	0.126			1
Trichloroethene	0.059	0.020		0.317	0.107			1
Tetrachloroethene	0.061	0.020		0.414	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	76		60-140
bromochloromethane	85		60-140
chlorobenzene-d5	79		60-140

Project Name: **COMPUTER CIRCUITS**

Project Number: MAR1701 Lab Number:

L1746905

Report Date:

Date Collected:

Date Received:

Field Prep:

12/28/17

12/19/17 16:16

Not Specified

12/20/17

SAMPLE RESULTS

Lab ID: L1746905-04

Client ID: IA-2

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Matrix:

Air Anaytical Method: 48,TO-15

Analytical Date: 12/27/17 22:59

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.347	0.200		1.72	0.989			1
Chloromethane	0.619	0.200		1.28	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	139	5.00		262	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	13.2	1.00		31.4	2.38			1
Trichlorofluoromethane	0.577	0.200		3.24	1.12			1
sopropanol	96.7	0.500		238	1.23			1
Tertiary butyl Alcohol	0.707	0.500		2.14	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.515	0.500		1.52	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date:

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-04

Client ID: IA-2

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Date Collected:

12/19/17 16:16

Date Received: Field Prep:

12/20/17

rep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.304	0.200		0.971	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	0.333	0.200		1.36	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.463	0.200		1.74	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1

L1746905

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701 Report Date:

Renort Date: 40/00/47

Lab Number:

Peport Date: 12/28/17

SAMPLE RESULTS

Lab ID: L1746905-04

Date Collected: 12/19/17 16:16

Client ID: IA-2

Date Received: 12/20/17

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Field Prep: Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	81		60-140
Bromochloromethane	86		60-140
chlorobenzene-d5	79		60-140

Project Name: COMPUTER CIRCUITS Lab Number: L1746905

Project Number: MAR1701 Report Date: 12/28/17

SAMPLE RESULTS

Lab ID: L1746905-04 Date Collected: 12/19/17 16:16

Client ID: Date Received: 12/20/17

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 48,TO-15-SIM

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	0.020	0.020		0.109	0.109			1
Carbon tetrachloride	0.086	0.020		0.541	0.126			1
Trichloroethene	0.065	0.020		0.349	0.107			1
Tetrachloroethene	0.077	0.020		0.522	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	82		60-140
bromochloromethane	87		60-140
chlorobenzene-d5	80		60-140

L1746905

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701 Report

Report Date: 12/28/17

Lab Number:

SAMPLE RESULTS

Lab ID: L1746905-05

Client ID: IA-8

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Matrix: Air

Analytical Method: 48,TO-15 Analytical Date: 12/27/17 23:31

Analyst: RY

Date Collected: 12/19/17 16:18
Date Received: 12/20/17

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.356	0.200		1.76	0.989			1
Chloromethane	0.667	0.200		1.38	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	256	5.00		482	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	11.7	1.00		27.8	2.38			1
Trichlorofluoromethane	0.303	0.200		1.70	1.12			1
Isopropanol	10.9	0.500		26.8	1.23			1
Tertiary butyl Alcohol	0.538	0.500		1.63	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.529	0.500		1.56	1.47			1
Ethyl Acetate	0.801	0.500		2.89	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date:

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-05

Client ID: IA-8

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Date Collected:

12/19/17 16:18

Date Received:

12/20/17

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.294	0.200		0.939	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.456	0.200		1.72	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1

Project Name: **COMPUTER CIRCUITS**

Project Number: MAR1701 Lab Number:

L1746905

Report Date:

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-05 Date Collected:

12/19/17 16:18

Client ID: IA-8

12/20/17

Date Received:

Sample Location:

145 MARCUS BLVD, HAUPPAUGE, NY

Field Prep: Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	_ab							
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	76		60-140
Bromochloromethane	85		60-140
chlorobenzene-d5	76		60-140

Project Name: COMPUTER CIRCUITS Lab Number: L1746905

Project Number: MAR1701 Report Date: 12/28/17

SAMPLE RESULTS

Lab ID: L1746905-05 Date Collected: 12/19/17 16:18

Client ID: IA-8 Date Received: 12/20/17

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/27/17 23:31

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.092	0.020		0.579	0.126			1
Trichloroethene	0.148	0.020		0.795	0.107			1
Tetrachloroethene	0.084	0.020		0.570	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	75		60-140
bromochloromethane	85		60-140
chlorobenzene-d5	77		60-140

Project Name: **COMPUTER CIRCUITS**

Project Number: MAR1701 Lab Number:

L1746905

Report Date:

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-06

Client ID: IA-3

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Matrix:

Air

Anaytical Method: 48,TO-15 Analytical Date:

12/28/17 00:36

Analyst: RY Date Collected: 12/19/17 16:19 Date Received: 12/20/17

Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.328	0.200		1.62	0.989			1
Chloromethane	0.666	0.200		1.38	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	254	5.00		479	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	11.9	1.00		28.3	2.38			1
Trichlorofluoromethane	0.272	0.200		1.53	1.12			1
Isopropanol	10.6	0.500		26.1	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.585	0.500		1.73	1.47			1
Ethyl Acetate	0.737	0.500		2.66	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1

Project Name: **COMPUTER CIRCUITS**

Project Number: MAR1701 Lab Number:

L1746905

Report Date:

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-06

IA-3

Client ID: Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY Date Collected:

12/19/17 16:19

Date Received:

12/20/17

Field Prep: Not Specified

		ppbV			ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.284	0.200		0.907	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	0.203	0.200		0.832	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.637	0.200		2.40	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1

L1746905

Lab Number:

Project Name: **COMPUTER CIRCUITS**

Report Date:

Project Number: MAR1701 12/28/17

SAMPLE RESULTS

Lab ID: L1746905-06 Date Collected: 12/19/17 16:19

Client ID: IA-3 Date Received: 12/20/17 Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY Field Prep: Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	79		60-140
Bromochloromethane	87		60-140
chlorobenzene-d5	79		60-140

Project Name: COMPUTER CIRCUITS Lab Number: L1746905

Project Number: MAR1701 Report Date: 12/28/17

SAMPLE RESULTS

Lab ID: L1746905-06 Date Collected: 12/19/17 16:19

Client ID: IA-3 Date Received: 12/20/17

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 48,TO-15-SIM 12/28/17 00:36

Analyst: RY

		ppbV		ug/m3			_	Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.090	0.020		0.566	0.126			1
Trichloroethene	0.142	0.020		0.763	0.107			1
Tetrachloroethene	0.086	0.020		0.583	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	80		60-140
bromochloromethane	88		60-140
chlorobenzene-d5	80		60-140

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date:

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-07

Client ID: IA-5

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Matrix:

Air

Analytical Method: 48,TO-15 Analytical Date: 12/28/17 01:09

Analyst: RY

Date Collected:

12/19/17 16:22

Date Received:

12/20/17

Field Prep: Not Specified

ppbV ug/m3 **Dilution Factor** Results RL MDL Qualifier Results RLMDL **Parameter** Volatile Organics in Air - Mansfield Lab Dichlorodifluoromethane 0.584 0.200 2.89 0.989 1 Chloromethane 0.800 0.200 1.65 0.413 1 ----Freon-114 ND 0.200 ND 1.40 1 1,3-Butadiene ND 0.200 ND 1 --0.442 --Bromomethane ND 0.200 ND 0.777 1 ----Chloroethane ND 0.200 ND 0.528 1 Ethanol 140 5.00 264 9.42 1 Vinyl bromide ND 0.200 --ND 0.874 1 Acetone 9.75 1.00 --23.2 2.38 --1 Trichlorofluoromethane 0.265 0.200 1.49 1 1.12 --Isopropanol 11.1 0.500 27.3 1.23 1 Tertiary butyl Alcohol 0.514 0.500 1.56 1.52 --1 Methylene chloride ND 0.500 --ND 1.74 --1 3-Chloropropene ND 0.200 ND 0.626 1 Carbon disulfide ND 0.200 ND 0.623 1 ----Freon-113 ND 0.200 ND 1.53 1 trans-1,2-Dichloroethene ND 0.200 --ND 0.793 1 1,1-Dichloroethane ND 0.200 ND 0.809 1 ----Methyl tert butyl ether ND 0.200 ND 0.721 1 --2-Butanone 0.603 0.500 1.78 1.47 1 ----Ethyl Acetate 0.572 0.500 2.06 1.80 1 Chloroform ND 0.200 ND 0.977 1

ND

ND

0.500

0.200

--

ND

ND

1.47

0.809

--

1

1

Tetrahydrofuran

1,2-Dichloroethane

Project Name: **COMPUTER CIRCUITS**

Project Number: MAR1701 Lab Number:

L1746905

Report Date:

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-07

Sample Location:

Date Collected:

12/19/17 16:22

Client ID: IA-5

145 MARCUS BLVD, HAUPPAUGE, NY

Date Received: Field Prep:

12/20/17 Not Specified

ua/m3

	ppbV				ug/m3	ug/m3		Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
n-Hexane	0.234	0.200		0.825	0.705			1
Benzene	0.314	0.200		1.00	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	0.213	0.200		0.995	0.934			1
Heptane	0.255	0.200		1.05	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.516	0.200		1.94	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1

L1746905

Lab Number:

Project Name: **COMPUTER CIRCUITS**

Project Number: Report Date: MAR1701

12/28/17

SAMPLE RESULTS

Lab ID: L1746905-07 Date Collected: 12/19/17 16:22

Client ID: IA-5 Date Received: 12/20/17

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY Field Prep: Not Specified

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	77		60-140
Bromochloromethane	84		60-140
chlorobenzene-d5	80		60-140

12/19/17 16:22

Not Specified

12/20/17

Date Collected:

Date Received:

Field Prep:

Project Name: COMPUTER CIRCUITS Lab Number: L1746905

Project Number: MAR1701 Report Date: 12/28/17

SAMPLE RESULTS

Lab ID: L1746905-07

Client ID: IA-5

Sample Location: 145 MARCUS BLVD, HAUPPAUGE, NY

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 48,TO-15-SIM 12/28/17 01:09

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by S	IM - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.090	0.020		0.566	0.126			1
Trichloroethene	0.077	0.020		0.414	0.107			1
Tetrachloroethene	0.094	0.020		0.637	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	77		60-140
bromochloromethane	85		60-140
chlorobenzene-d5	81		60-140

Project Name: COMPUTER CIRCUITS Lab Number: L1746905

Project Number: MAR1701 Report Date: 12/28/17

Method Blank Analysis Batch Quality Control

		Vdqq						Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 01-	07 Batch:	WG10770)46-4			
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

Project Name: COMPUTER CIRCUITS Lab Number: L1746905

Project Number: MAR1701 Report Date: 12/28/17

Method Blank Analysis Batch Quality Control

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	ole(s): 01-	-07 Batch:	WG10770)46-4			
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1

L1746905

Lab Number:

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701 Report Date: 12/28/17

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 12/27/17 15:21

	ug/m3				Dilution		
Results	RL	RL MDL		RL	MDL	Qualifier	Factor
Lab for samp	ole(s): 01-	07 Batch:	WG10770)46-4			
ND	0.200		ND	0.869			1
ND	0.400		ND	1.74			1
ND	0.200		ND	2.07			1
ND	0.200		ND	0.852			1
ND	0.200		ND	1.37			1
ND	0.200		ND	0.869			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	0.983			1
ND	0.200		ND	1.04			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.20			1
ND	0.200		ND	1.48			1
ND	0.200		ND	2.13			1
	ND N	ND 0.200	Results RL MDL Lab for sample(s): 01-07 Batch: ND 0.200 ND 0.400 ND 0.200 ND 0.200	Results RL MDL Results Lab for sample(s): 01-07 Batch: WG10770 ND 0.200 ND ND 0.400 ND ND 0.200 ND	Results RL MDL Results RL Lab for sample(s): 01-07 Batch: WG1077046-4 ND 0.869 ND 0.200 ND 0.869 ND 0.400 ND 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND	Results RL MDL Results RL MDL Lab for sample(s): 01-07 Batch: WG1077046-4 WG1077046-4 ND 0.200 ND 0.869 ND 0.400 ND 1.74 ND 0.200 ND 2.07 ND 0.200 ND 0.852 ND 0.200 ND 0.869 ND 0.200 ND 0.983 ND 0.200 ND 0.983 ND 0.200 ND 1.04 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 ND 0.200 ND 1.20 N	Results RL MDL Results RL MDL Qualifier Lab for sample(s): 01-07 Batch: WG1077046-4 ND 0.869 ND 0.869 ND 1.74 ND 1.74 ND 1.74 ND 0.207 ND 0.852 ND 0.852 ND 1.37 ND 0.869 ND 0.869 ND 0.983 ND 0.983

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: COMPUTER CIRCUITS Lab Number: L1746905

Project Number: MAR1701 Report Date: 12/28/17

Method Blank Analysis Batch Quality Control

		ppbV				ug/m3			
Parameter	Results	RL MDL		Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM -	Mansfield Lab fo	or sample	e(s): 03-07	Batch: W	G107704	7-4			
Propylene	ND	0.500		ND	0.861			1	
Dichlorodifluoromethane	ND	0.200		ND	0.989			1	
Chloromethane	ND	0.200		ND	0.413			1	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1	
Vinyl chloride	ND	0.020		ND	0.051			1	
1,3-Butadiene	ND	0.020		ND	0.044			1	
Bromomethane	ND	0.020		ND	0.078			1	
Chloroethane	ND	0.100		ND	0.264			1	
Ethyl Alcohol	ND	5.00		ND	9.42			1	
Vinyl bromide	ND	0.200		ND	0.874			1	
Acetone	ND	1.00		ND	2.38			1	
Trichlorofluoromethane	ND	0.050		ND	0.281			1	
iso-Propyl Alcohol	ND	0.500		ND	1.23			1	
Acrylonitrile	ND	0.500		ND	1.09			1	
1,1-Dichloroethene	ND	0.020		ND	0.079			1	
tert-Butyl Alcohol	ND	0.500		ND	1.52			1	
Methylene chloride	ND	0.500		ND	1.74			1	
3-Chloropropene	ND	0.200		ND	0.626			1	
Carbon disulfide	ND	0.200		ND	0.623			1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1	
Halothane	ND	0.050		ND	0.404			1	
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
1,1-Dichloroethane	ND	0.020		ND	0.081			1	
Methyl tert butyl ether	ND	0.200		ND	0.721			1	
Vinyl acetate	ND	1.00		ND	3.52			1	

Project Name: COMPUTER CIRCUITS Lab Number: L1746905

Project Number: MAR1701 Report Date: 12/28/17

Method Blank Analysis Batch Quality Control

		ppbV				ug/m3		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - N	Mansfield Lab f	or sample	e(s): 03-07	Batch: W	G107704	7-4		
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.020		ND	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Cyclohexane	ND	0.200		ND	0.688			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.020		ND	0.170			1

Project Name: COMPUTER CIRCUITS Lab Number: L1746905

Project Number: MAR1701 Report Date: 12/28/17

Method Blank Analysis Batch Quality Control

Parameter Volatile Organics in Air by SIM - M	Results ansfield Lab fo	RL or sample	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M		or sample	(0): 02 07		Results RL		Qualifier	Factor
	ND		(8). 03-07	Batch: W	G107704	7-4		
1,2-Dibromoethane		0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
1,2,3-Trichloropropane	ND	0.020		ND	0.121			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1

Project Name: COMPUTER CIRCUITS Lab Number: L1746905

Project Number: MAR1701 Report Date: 12/28/17

Method Blank Analysis Batch Quality Control

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab fo	or sample	e(s): 03-07	Batch: W	G107704	17-4		
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Lab Control Sample Analysis Batch Quality Control

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1746905

Report Date: 12/28/17

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	ssociated sample(s):	01-07	Batch: WG107704	16-3				
Chlorodifluoromethane	84		-		70-130	-		
Propylene	87		-		70-130	-		
Propane	74		-		70-130	-		
Dichlorodifluoromethane	93		-		70-130	-		
Chloromethane	96		-		70-130	-		
1,2-Dichloro-1,1,2,2-tetrafluoroethane	112		-		70-130	-		
Methanol	81		-		70-130	-		
Vinyl chloride	105		-		70-130	-		
1,3-Butadiene	103		-		70-130	-		
Butane	86		-		70-130	-		
Bromomethane	109		-		70-130	-		
Chloroethane	103		-		70-130	-		
Ethyl Alcohol	84		-		70-130	-		
Dichlorofluoromethane	100		-		70-130	-		
Vinyl bromide	107		-		70-130	-		
Acrolein	84		-		70-130	-		
Acetone	107		-		70-130	-		
Acetonitrile	89		-		70-130	-		
Trichlorofluoromethane	126		-		70-130	-		
iso-Propyl Alcohol	102		-		70-130	-		
Acrylonitrile	94		-		70-130	-		
Pentane	90		-		70-130	-		
Ethyl ether	81		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1746905

Report Date: 12/28/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-07	Batch: WG107704	6-3				
1,1-Dichloroethene	108		-		70-130	-		
tert-Butyl Alcohol	91		-		70-130	-		
Methylene chloride	106		-		70-130	-		
3-Chloropropene	94		-		70-130	-		
Carbon disulfide	99		-		70-130	-		
1,1,2-Trichloro-1,2,2-Trifluoroethane	114		-		70-130	-		
trans-1,2-Dichloroethene	89		-		70-130	-		
1,1-Dichloroethane	90		-		70-130	-		
Methyl tert butyl ether	90		-		70-130	-		
Vinyl acetate	99		-		70-130	-		
2-Butanone	89		-		70-130	-		
cis-1,2-Dichloroethene	90		-		70-130	-		
Ethyl Acetate	102		-		70-130	-		
Chloroform	110		-		70-130	-		
Tetrahydrofuran	82		-		70-130	-		
2,2-Dichloropropane	95		-		70-130	-		
1,2-Dichloroethane	103		-		70-130	-		
n-Hexane	92		-		70-130	-		
Isopropyl Ether	89		-		70-130	-		
Ethyl-Tert-Butyl-Ether	81		-		70-130	-		
1,1,1-Trichloroethane	102		-		70-130	-		
1,1-Dichloropropene	86		-		70-130	-		
Benzene	92		-		70-130	-		

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1746905

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab As	sociated sample(s):	01-07	Batch: WG107704	16-3				
Carbon tetrachloride	112		-		70-130	-		
Cyclohexane	87		-		70-130	-		
Tertiary-Amyl Methyl Ether	78		-		70-130	-		
Dibromomethane	101		-		70-130	-		
1,2-Dichloropropane	95		-		70-130	-		
Bromodichloromethane	106		-		70-130	-		
1,4-Dioxane	98		-		70-130	-		
Trichloroethene	105		-		70-130	-		
2,2,4-Trimethylpentane	94		-		70-130	-		
Methyl Methacrylate	93		-		70-130	-		
Heptane	85		-		70-130	-		
cis-1,3-Dichloropropene	95		-		70-130	-		
4-Methyl-2-pentanone	91		-		70-130	-		
trans-1,3-Dichloropropene	83		-		70-130	-		
1,1,2-Trichloroethane	105		-		70-130	-		
Toluene	98		-		70-130	-		
1,3-Dichloropropane	93		-		70-130	-		
2-Hexanone	94		-		70-130	-		
Dibromochloromethane	117		-		70-130	-		
1,2-Dibromoethane	107		-		70-130	-		
Butyl Acetate	85		-		70-130	-		
Octane	86		-		70-130	-		
Tetrachloroethene	107		-		70-130	-		

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1746905

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield La	b Associated sample(s):	01-07	Batch: WG107704	l6-3				
1,1,1,2-Tetrachloroethane	103		-		70-130	-		
Chlorobenzene	106		-		70-130	-		
Ethylbenzene	99		-		70-130	-		
p/m-Xylene	102		-		70-130	-		
Bromoform	118		-		70-130	-		
Styrene	100		-		70-130	-		
1,1,2,2-Tetrachloroethane	111		-		70-130	-		
o-Xylene	105		-		70-130	-		
1,2,3-Trichloropropane	95		-		70-130	-		
Nonane (C9)	84		-		70-130	-		
Isopropylbenzene	98		-		70-130	-		
Bromobenzene	92		-		70-130	-		
o-Chlorotoluene	96		-		70-130	-		
n-Propylbenzene	99		-		70-130	-		
p-Chlorotoluene	94		-		70-130	-		
4-Ethyltoluene	103		-		70-130	-		
1,3,5-Trimethylbenzene	102		-		70-130	-		
tert-Butylbenzene	100		-		70-130	-		
1,2,4-Trimethylbenzene	109		-		70-130	-		
Decane (C10)	90		-		70-130	-		
Benzyl chloride	103		-		70-130	-		
1,3-Dichlorobenzene	111		-		70-130	-		
1,4-Dichlorobenzene	108		-		70-130	-		

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date:

12/28/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ociated sample(s):	01-07	Batch: WG107704	6-3				
sec-Butylbenzene	98		-		70-130	-		
p-Isopropyltoluene	93		-		70-130	-		
1,2-Dichlorobenzene	110		-		70-130	-		
n-Butylbenzene	100		-		70-130	-		
1,2-Dibromo-3-chloropropane	103		-		70-130	-		
Undecane	103		-		70-130	-		
Dodecane (C12)	116		-		70-130	-		
1,2,4-Trichlorobenzene	130		-		70-130	-		
Naphthalene	109		-		70-130	-		
1,2,3-Trichlorobenzene	113		-		70-130	-		
Hexachlorobutadiene	123		-		70-130	-		

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1746905

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics in Air by SIM - Mansfie	eld Lab Associated s	ample(s): 0	3-07 Batch: WG	31077047-3	3				
Propylene	87		-		70-130	-		25	
Dichlorodifluoromethane	99		-		70-130	-		25	
Chloromethane	88		-		70-130	-		25	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	108		-		70-130	-		25	
Vinyl chloride	100		-		70-130	-		25	
1,3-Butadiene	101		-		70-130	-		25	
Bromomethane	112		-		70-130	-		25	
Chloroethane	100		-		70-130	-		25	
Ethyl Alcohol	81		-		70-130	-		25	
Vinyl bromide	107		-		70-130	-		25	
Acetone	108		-		70-130	-		25	
Trichlorofluoromethane	124		-		70-130	-		25	
iso-Propyl Alcohol	107		-		70-130	-		25	
Acrylonitrile	93		-		70-130	-		25	
1,1-Dichloroethene	106		-		70-130	-		25	
tert-Butyl Alcohol ¹	86		-		70-130	-		25	
Methylene chloride	106		-		70-130	-		25	
3-Chloropropene	98		-		70-130	-		25	
Carbon disulfide	96		-		70-130	-		25	
1,1,2-Trichloro-1,2,2-Trifluoroethane	113		-		70-130	-		25	
Halothane	116		-		70-130	-		25	
trans-1,2-Dichloroethene	92		-		70-130	-		25	
1,1-Dichloroethane	94		-		70-130	-		25	

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1746905

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics in Air by SIM - Mansfield L	ab Associated sa	ample(s): 0	3-07 Batch: WG	31077047-3					
Methyl tert butyl ether	93		-		70-130	-		25	
Vinyl acetate	95		-		70-130	-		25	
2-Butanone	89		-		70-130	-		25	
cis-1,2-Dichloroethene	90		-		70-130	-		25	
Ethyl Acetate	103		-		70-130	-		25	
Chloroform	109		-		70-130	-		25	
Tetrahydrofuran	79		-		70-130	-		25	
1,2-Dichloroethane	104		-		70-130	-		25	
n-Hexane	83		-		70-130	-		25	
1,1,1-Trichloroethane	105		-		70-130	-		25	
Benzene	91		-		70-130	-		25	
Carbon tetrachloride	111		-		70-130	-		25	
Cyclohexane	82		-		70-130	-		25	
Dibromomethane ¹	88		-		70-130	-		25	
1,2-Dichloropropane	94		-		70-130	-		25	
Bromodichloromethane	105		-		70-130	-		25	
1,4-Dioxane	97		-		70-130	-		25	
Trichloroethene	99		-		70-130	-		25	
2,2,4-Trimethylpentane	91		-		70-130	-		25	
cis-1,3-Dichloropropene	92		-		70-130	-		25	
4-Methyl-2-pentanone	94		-		70-130	-		25	
trans-1,3-Dichloropropene	80		-		70-130	-		25	
1,1,2-Trichloroethane	106		-		70-130	-		25	

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1746905

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield	Lab Associated s	ample(s): 03	-07 Batch: WC	91077047-3					
Toluene	96		-		70-130	-		25	
2-Hexanone	93		-		70-130	-		25	
Dibromochloromethane	118		-		70-130	-		25	
1,2-Dibromoethane	107		-		70-130	-		25	
Tetrachloroethene	110		-		70-130	-		25	
1,1,1,2-Tetrachloroethane	103		-		70-130	-		25	
Chlorobenzene	107		-		70-130	-		25	
Ethylbenzene	96		-		70-130	-		25	
p/m-Xylene	101		-		70-130	-		25	
Bromoform	123		-		70-130	-		25	
Styrene	98		-		70-130	-		25	
1,1,2,2-Tetrachloroethane	111		-		70-130	-		25	
o-Xylene	102		-		70-130	-		25	
1,2,3-Trichloropropane ¹	99		-		70-130	-		25	
Isopropylbenzene	96		-		70-130	-		25	
Bromobenzene ¹	93		-		70-130	-		25	
4-Ethyltoluene	104		-		70-130	-		25	
1,3,5-Trimethylbenzene	104		-		70-130	-		25	
1,2,4-Trimethylbenzene	108		-		70-130	-		25	
Benzyl chloride	100		-		70-130	-		25	
1,3-Dichlorobenzene	118		-		70-130	-		25	
1,4-Dichlorobenzene	115		-		70-130	-		25	
sec-Butylbenzene	99		-		70-130	-		25	

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1

L1746905

Report Date:

12/28/17

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lab	Associated s	ample(s):	03-07 Batch: WG	31077047-3	3				
p-Isopropyltoluene	92		-		70-130	-		25	
1,2-Dichlorobenzene	115		-		70-130	-		25	
n-Butylbenzene	104		-		70-130	-		25	
1,2,4-Trichlorobenzene	136	Q	-		70-130	-		25	
Naphthalene	115		-		70-130	-		25	
1,2,3-Trichlorobenzene	123		-		70-130	-		25	
Hexachlorobutadiene	132	Q	-		70-130	-		25	

Lab Duplicate Analysis Batch Quality Control

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1746905

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-07	QC Batch ID: WG1077046-5	QC Sample:	L1746905-	-05 Client ID	: IA-8	
Dichlorodifluoromethane	0.356	0.512	ppbV	36	Q	25	
Chloromethane	0.667	0.687	ppbV	3		25	
Freon-114	ND	ND	ppbV	NC		25	
1,3-Butadiene	ND	ND	ppbV	NC		25	
Bromomethane	ND	ND	ppbV	NC		25	
Chloroethane	ND	ND	ppbV	NC		25	
Ethanol	256	247	ppbV	4		25	
Vinyl bromide	ND	ND	ppbV	NC		25	
Acetone	11.7	11.5	ppbV	2		25	
Trichlorofluoromethane	0.303	0.275	ppbV	10		25	
Isopropanol	10.9	10.4	ppbV	5		25	
Tertiary butyl Alcohol	0.538	0.507	ppbV	6		25	
Methylene chloride	ND	ND	ppbV	NC		25	
3-Chloropropene	ND	ND	ppbV	NC		25	
Carbon disulfide	ND	ND	ppbV	NC		25	
Freon-113	ND	ND	ppbV	NC		25	
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25	
1,1-Dichloroethane	ND	ND	ppbV	NC		25	
Methyl tert butyl ether	ND	ND	ppbV	NC		25	
2-Butanone	0.529	0.508	ppbV	4		25	
Ethyl Acetate	0.801	0.768	ppbV	4		25	

Lab Duplicate Analysis Batch Quality Control

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number: L1746905

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-07	QC Batch ID: WG1077046-5	QC Sample:	L1746905-	-05 Client ID: IA-8
Chloroform	ND	ND	ppbV	NC	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	ND	ND	ppbV	NC	25
Benzene	0.294	0.277	ppbV	6	25
Cyclohexane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
Heptane	ND	0.210	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	0.456	0.433	ppbV	5	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25

Lab Duplicate Analysis Batch Quality Control

Project Name: COMPUTER CIRCUITS

Project Number: MAR1701

Lab Number:

L1746905

Report Date:

12/28/17

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
olatile Organics in Air - Mansfield Lab Associa	ted sample(s): 01-07 Q	C Batch ID: WG1077046-5	QC Sa	mple: L1746905-	05 Client ID: IA-8
p/m-Xylene	ND	ND	ppbV	NC	25
Bromoform	ND	ND	ppbV	NC	25
Styrene	ND	ND	ppbV	NC	25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC	25
o-Xylene	ND	ND	ppbV	NC	25
4-Ethyltoluene	ND	ND	ppbV	NC	25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC	25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC	25
Benzyl chloride	ND	ND	ppbV	NC	25
1,3-Dichlorobenzene	ND	ND	ppbV	NC	25
1,4-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2-Dichlorobenzene	ND	ND	ppbV	NC	25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC	25
Hexachlorobutadiene	ND	ND	ppbV	NC	25
olatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 03	3-07 QC Batch ID: WG107	7047-5	QC Sample: L17	746905-05 Client ID: IA-8
Vinyl chloride	ND	ND	ppbV	NC	25
1,1-Dichloroethene	ND	ND	ppbV	NC	25
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25
Carbon tetrachloride	0.092	0.090	ppbV	2	25
Trichloroethene	0.148	0.147	ppbV	1	25
Tetrachloroethene	0.084	0.080	ppbV	5	25

Lab Number: L1746905

Report Date: 12/28/17

Project Number: MAR1701

COMPUTER CIRCUITS

Project Name:

Canister and Flow Controller Information

								Initial	Pressure	Flow			
Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Pressure (in. Hg)	on Receipt (in. Hg)	Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1746905-01	SVE-SOUTH	0949	Flow 4	12/15/17	254554		-	-	-	Pass	18.0	15.5	15
L1746905-01	SVE-SOUTH	2239	2.7L Can	12/15/17	254554	L1746096-02	Pass	-29.7	-9.8	-	-	-	-
L1746905-02	SVE-NORTH	0101	Flow 2	12/15/17	254554		-	-	-	Pass	17.5	17.9	2
L1746905-03	IA-4	0733	Flow 2	12/15/17	254554		-	-	-	Pass	4.5	5.4	18
L1746905-03	IA-4	195	2.7L Can	12/15/17	254554	L1746096-02	Pass	-29.7	-8.8	-	-	-	-
L1746905-04	IA-2	0088	Flow 4	12/15/17	254554		-	-	-	Pass	4.5	4.6	2
L1746905-04	IA-2	509	2.7L Can	12/15/17	254554	L1746096-02	Pass	-29.7	-7.7	-	-	-	-
L1746905-05	IA-8	0018	Flow 4	12/15/17	254554		-	-	-	Pass	4.5	4.7	4
L1746905-05	IA-8	404	2.7L Can	12/15/17	254554	L1746096-02	Pass	-29.7	-8.4	-	-	-	-
L1746905-06	IA-3	0890	Flow 4	12/15/17	254554		-	-	-	Pass	4.4	4.8	9
L1746905-06	IA-3	2365	2.7L Can	12/15/17	254554	L1746096-03	Pass	-29.5	-7.6	-	-	-	-
L1746905-07	IA-5	0240	Flow 5	12/15/17	254554		-	-	-	Pass	4.5	4.8	6
L1746905-07	IA-5	108	2.7L Can	12/15/17	254554	L1746096-03	Pass	-29.5	-7.5	-	-	-	

L1746096

12/13/17 16:00

Not Specified

12/14/17

Lab Number:

Date Collected:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-02

Client ID: CAN 2363 SHELF 7 Date Received:

Sample Location:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 12/14/17 09:07

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

L1746096

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-02 Date Collected: 12/13/17 16:00

Client ID: CAN 2363 SHELF 7 Date Received: 12/14/17

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	ld Lab							
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

L1746096

12/13/17 16:00

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-02 Date Collected:

Client ID: CAN 2363 SHELF 7 Date Received: 12/14/17

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

L1746096

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-02 Date Collected: 12/13/17 16:00

Client ID: CAN 2363 SHELF 7 Date Received: 12/14/17

Sample Location: Field Prep: Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1746096

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-02 Date Collected: 12/13/17 16:00

Client ID: CAN 2363 SHELF 7 Date Received: 12/14/17

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	74		60-140
Bromochloromethane	87		60-140
chlorobenzene-d5	75		60-140

L1746096

12/13/17 16:00

Not Specified

12/14/17

Lab Number:

Date Collected:

Date Received:

Field Prep:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-02

Client ID: CAN 2363 SHELF 7

Sample Location:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/14/17 09:07

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	l - Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1746096

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-02 Date Collected: 12/13/17 16:00

Client ID: CAN 2363 SHELF 7 Date Received: 12/14/17

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-02

Client ID: CAN 2363 SHELF 7

Sample Location:

Date Collected:

Lab Number:

12/13/17 16:00

Date Received:

12/14/17

L1746096

Field Prep:

Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	nsfield Lab							
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	74		60-140
bromochloromethane	87		60-140
chlorobenzene-d5	75		60-140

L1746096

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-03 Date Collected: 12/13/17 16:00

Client ID: CAN 485 SHELF 8 Date Received: 12/14/17

Sample Location: Field Prep: Not Specified

Matrix: Air Anaytical Method: 48,TO-15

Analytical Date: 12/14/17 09:41

Analyst: RY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Frichlorofluoromethane	ND	0.200		ND	1.12			1
sopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1

L1746096

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-03 Date Collected: 12/13/17 16:00

Client ID: CAN 485 SHELF 8 Date Received: 12/14/17

Sample Location: Field Prep: Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1

L1746096

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-03 Date Collected: 12/13/17 16:00

Client ID: CAN 485 SHELF 8 Date Received: 12/14/17

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
sopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1

L1746096

12/28/17

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date:

Air Canister Certification Results

 Lab ID:
 L1746096-03
 Date Collected:
 12/13/17 16:00

 Client ID:
 CAN 485 SHELF 8
 Date Received:
 12/14/17

Sample Location:

Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

	Results	Qualifier	Units	RDL	Dilution Factor
Tentatively Identified Compounds					

No Tentatively Identified Compounds

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L1746096

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-03 Date Collected: 12/13/17 16:00

Client ID: CAN 485 SHELF 8 Date Received: 12/14/17

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	72		60-140
Bromochloromethane	87		60-140
chlorobenzene-d5	76		60-140

L1746096

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-03 Date Collected: 12/13/17 16:00

Client ID: CAN 485 SHELF 8 Date Received: 12/14/17

Sample Location: Field Prep: Not Specified

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 12/14/17 09:41

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
Halothane	ND	0.050		ND	0.404			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1

L1746096

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-03 Date Collected: 12/13/17 16:00

Client ID: CAN 485 SHELF 8 Date Received: 12/14/17

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Foluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
o-Isopropyltoluene	ND	0.200		ND	1.10			1

L1746096

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 12/28/17

Air Canister Certification Results

Lab ID: L1746096-03 Date Collected: 12/13/17 16:00

Client ID: CAN 485 SHELF 8 Date Received: 12/14/17

Sample Location: Field Prep: Not Specified

ppbV				ug/m3		Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
sfield Lab							
ND	0.020		ND	0.120			1
ND	0.200		ND	1.10			1
ND	0.050		ND	0.371			1
ND	0.050		ND	0.262			1
ND	0.050		ND	0.371			1
ND	0.050		ND	0.533			1
	ND ND ND ND ND ND ND ND ND	Results RL nsfield Lab ND 0.020 ND 0.200 ND 0.050 ND 0.050 ND 0.050 ND 0.050 ND 0.050	Results RL MDL nsfield Lab ND 0.020 ND 0.200 ND 0.050 ND 0.050 ND 0.050	Results RL MDL Results NSfield Lab ND 0.020 ND ND 0.200 ND ND 0.050 ND ND 0.050 ND ND 0.050 ND	Results RL MDL Results RL ND 0.020 ND 0.120 ND 0.200 ND 1.10 ND 0.050 ND 0.371 ND 0.050 ND 0.262 ND 0.050 ND 0.371	Results RL MDL Results RL MDL nsfield Lab ND 0.020 ND 0.120 ND 0.200 ND 1.10 ND 0.050 ND 0.371 ND 0.050 ND 0.262 ND 0.050 ND 0.371	Results RL MDL Results RL MDL Qualifier NSfield Lab ND 0.020 ND 0.120 ND 0.200 ND 1.10 ND 0.050 ND 0.371 ND 0.050 ND 0.371 ND 0.050 ND 0.371

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	74		60-140
bromochloromethane	87		60-140
chlorobenzene-d5	75		60-140

Lab Number: L1746905

Report Date: 12/28/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

COMPUTER CIRCUITS

Cooler Information

Project Name:

Cooler Custody Seal

NA Absent

Project Number: MAR1701

Container Information				Initial	Final	Temp			Frozen		
	Container ID	D Container Type Cod		pН	pН	deg C Pres		Seal	Date/Time	Analysis(*)	
	L1746905-01A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)	
	L1746905-02A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30)	
	L1746905-03A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)	
	L1746905-04A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)	
	L1746905-05A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)	
	L1746905-06A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)	
	L1746905-07A	Canister - 2.7 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)	

Project Name:COMPUTER CIRCUITSLab Number:L1746905Project Number:MAR1701Report Date:12/28/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related

Report Format: Data Usability Report

Project Name:COMPUTER CIRCUITSLab Number:L1746905Project Number:MAR1701Report Date:12/28/17

Data Qualifiers

projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- **ND** Not detected at the reporting limit (RL) for the sample.

Report Format: Data Usability Report

Project Name:COMPUTER CIRCUITSLab Number:L1746905Project Number:MAR1701Report Date:12/28/17

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 10

Published Date: 1/16/2017 11:00:05 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

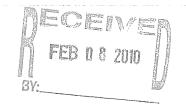
EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.


Pre-Qualtrax Document ID: 08-113 Document Type: Form

Alpha		NALYSIS	PAGEOF	Date Rec'd in La	b: 12/21/1-	7	ALPHA Jo	b#: L1746905
320 Forbes Blvd, Mai	CHAIN OF CUSTODY	Project Information	n A Table	Report Informa	ation - Data Deliv	erables	Billing Info	rmation
	FAX: 508-822-3288	Project Name: Con	puter Circuits	□ FAX	9129		Same as C	lient info PO#;
lient Information			Marcus BIH Haupeus	ADEx Criteria Che	okar			
Client: PWGC		Project #: MAR		(Default base	d on Regulatory Criteria Ind	licated)		
idress:630	Johnson Ave		nomas Melia	Other Form EMAIL (standa		-	Regulatory	Requirements/Report Lim
Sahemia,	NY 11716	ALPHA Quote #:		Additional Deli	verables:		State/Fed	Program Res / Com
none: 631 - 3	589-6353	Turn-Around Time		Report to: in afferent	than Project Manager)			
ax: ———		Standard D F	NICH					
nail: thomasmi	e pwgrosser.com	Avorangard D	RUSH (only continued if pre-approved)			A	ANAL	YSIS
These samples have	been previously analyzed by Alpha	Date Due:	Time:				///0/	/8///
	ecific Requirements/Com						1. 8	04
roject-Specific	Target Compound List: 1	3				/	The state of the s	
	A	II Columns	Below Must	Be Filled	Out		Silly Gases & Merca	
ALPHA Lab ID Lab Use Only)	Sample ID	COLL	ECTION	Sample Sampler's	1	low of S	APH Summer Ing	/
16905-01		End Date Start Time		Matrix* Initials	Size Can Contro	COLUMN TO SERVICE STREET	(4/E/8/	/ Sample Comments (i.e. PI
	SVE-South	0835			2.71 2239 094			
-07	SVE-North	12-19-17 0815 1		SU	243) 010			
-03			1610 -30.15 -6.46	AA	195 073	3 X		
-04	IA-2		616 30.55-8.14		509 008	8 /		
-03	TA-8	0907	1618 -29.73 -7.56		404 001	8		
-06	IA-3	0905	619 -30.41 -6.92		2365 089	10		
-07	IA-5	V 0909 1	622-2993-6,99	VV	V 108 024	011		
		1		1				
		4						
		4				0		
*SAMPLE I	MATRIX CODES S	A = Ambient Air (Indoor/C V = Soil Vapor/Landfill Ga- ther = Please Specify		Co	ntainer Type	05/95		Please print clearly, legibly and completely. Samples can not be
		Relinquished By:	Date/Time	∕ Preceiv	ed By:	Da	te/Time:	logged in and turnaround time clock will not start until any amb
	25	get by	1	May Silere	442	12/20)	17 9-34	guities are resolved. All sample submitted are subject to Alpha's Terms and Conditions.

APPENDIX D DRAFT INSTITUTIONAL CONTROLS

CERTILMAN BALIN

1393 VETERANS MEMORIAL HWY., SUITE 301S HAUPPAUGE, NY 11788 PHONE: 631.979.3000 • FAX: 631.979.7070 www.certilmanbalin.com

JAMES P. RIGANO
PARTNER
TELEPHONE 631.979.3000
jrigano(a certilmanbalin.com

February 4, 2010

Removal Action Branch (3 copies)
Response and Prevention Branch
U.S. Environmental Protection Agency
2890 Woodbridge Ave., Bldg. 209 (MS-211)
Edison, NJ 08837
Attn: Computer Circuits Superfund Site,
On-Scene Coordinator

Chief, NY/Caribbean Superfund Branch (1 copy)
Office of Regional Counsel
US Environmental Protection Agency
290 Broadway, 17th Floor
New York, NY 10007-1866
Attn: Henry Guzman, Computer Circuits
Superfund Site, Site Attorney

U.S. Environmental Protection Agency (3 copies) NY Remediation Branch Emergency & Remedial Response Div. 290 Broadway, 20th Floor New York, NY 10007-1866 Attn: Computer Circuits Site, Remedial Project Manager

Hazardous Waste Remediation Bureau (2 copies) NY State Dept. of Environmental Conservation 625 Broadway Albany, NY 12233-7010 Attn: Computer Circuits Superfund Site Project Manager

Re:

Computer Circuits Superfund Site

Hauppauge, New York

Draft Declaration of Covenants and Restrictions

Dear Madam or Sir:

Enclosed please find a draft of the Declaration of Covenants and Restrictions.

Xery truly yours,

James P. Rigano

JPR/kad Enclosures

CC:

K. Almskog (w/enc.) √

DRAFT

DECLARATION of COVENANTS and RESTRICTIONS

THIS C	OVENANT, made	the day	of , 2	010, by 145	Marcus
Blvd., Inc, a corporation	on organized existi	ng under the	laws of the Sta	ate of New Y	ork and
having an office for the	e transaction of bus	siness at 79 V	illage Hill Dr	ive, Dix Hill	s, New
York 11746.					

WHEREAS, 145 Marcus Blvd., Inc. is the subject of an Administrative Order For Remedial Action issued by the U.S. Environmental Protection Agency (EPA) to 145 Marcus Blvd., Inc. under Section 106(a) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended, for that real property located at 145 Marcus Boulevard, Hauppauge in the Town of Smithtown, County of Suffolk, State of New York, which consists of one parcel conveyed as follows: (1) by MCS realty Co. to 145 Marcus Blvd., Inc. by deed dated October 31, 1991 and filed in the Suffolk County Clerk's Office on November 26, 1991 at Liber # 11376, Page # 0177 also known as District 0800, Section 185.00, Block 01.00, and Lot 009; and the property being more particularly described in Appendix "A", attached to this declaration and made a part hereof, and hereinafter referred to as "the Property"; and

WHEREAS, the EPA requires that the Property be subject to restrictive covenants.

NOW, THEREFORE, 145 Marcus Blvd., Inc. for itself and its successors and/or assigns, covenants that:

First, the Property subject to this Declaration of Covenants and Restrictions consists of the property described in Appendix A.

Second, the owner of the Property shall restrict the use of the groundwater underlying the Property without treatment rendering it safe for drinking water unless the user first obtains permission to do so from the EPA or if the EPA shall no longer exist, any government agency or agencies subsequently created to protect the environment of the State and the health of the State's citizens, hereinafter referred to as "the Relevant Agency".

Third, the owner of the Property shall restrict new construction outside the existing building, or, if inside the existing building, then if it will cause disruption of the slab or impact the remediation or monitoring systems, unless the potential for vapor intrusion is evaluated and, if necessary, mitigated.

Fourth, the owner of the Property shall restrict use of the Property to commercial or industrial uses.

Fifth, the owner of the Property hereby grants access rights to EPA or EPA's designated agent for the purpose of ensuring compliance with the Administrative Order.

Sixth, this Declaration is and shall be deemed a covenant that shall run with the land and shall be binding up on all future owners of the Property, and shall provide that the owner, and its successors and assigns, consents to enforcement by the Relevant Agency of the prohibitions and restrictions of the Administrative Order and hereby covenants not to contest the authority of the Relevant Agency to seek enforcement.

Seventh, any deed of conveyance of the Property, or any portion thereof, shall recite, unless the Relevant Agency has consented to the termination of such covenants and restrictions, that said conveyance is subject to this Declaration of Covenants and Restrictions.

IN WITNESS WHEREOF, the undersigned has executed this instrument the day written below

	145 Marcus Blvd., Inc.
	By: Name:
	Name:
STATE OF NEW YORK))SS	:
)SS COUNTY OF SUFFOLK)	
within instrument and acknowled capacities, and that by his signature	, in the year, before me, the undersigned, personally known to me or proved to me on the the individuals whose names are subscribed to the ged to me that they executed the same in their res on the instrument, the individuals, or the persons tals acted, executed the instrument.
	Notary Public

APPENDIX A

BEGINNING at a point on the easterly side of Marcus Blvd. distant 627.45 feet northerly from the northerly end of the curve connecting the easterly side of Marcus Blvd. with the northerly side of Kennedy Drive; running thence North 3 degrees 17 minutes 15 seconds West 311.14 feet along the easterly side of Marcus Blvd.; running thence North 86 degrees 42 minutes 45 seconds East 350.00 feet; running thence South 3 degrees 17 minutes 15 seconds East, 311.14 feet; running thence South 86 degrees 42 minutes 45 seconds West, 350.00 feet to the easterly side of Marcus Blvd. at the point or place of BEGINNING. Said premises are also known and described as 145 Marcus Boulevard, Hauppauge, New York 11788.

APPENDIX E DATA VALIDATION REPORT

2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

P.W. Grosser Consulting 630 Johnson Ave, Suite 7 Bohemia, NY 11716 ATTN: Ms. Heather Morain-Botta February 28, 2018

ATTN. MS. Heather Moralli-Dotta

SUBJECT: MAR1601 - Former Computer Circuits, Data Validation Report

Dear Ms. Morain-Botta,

Enclosed are the final data validation reports for the fraction listed below. These SDGs were received on January 30, 2018. Attachment 1 is a summary of the samples that were reviewed for analysis.

LDC Project #40330:

SDG #	<u>Fraction</u>
L1726012 L1726929	Volatiles
L1746905	

The data validation was performed under Category B validation guidelines. The analyses were validated using the following documents and variances, as applicable to each method:

- USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6, June 2014
- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002, January 2017

Please feel free to contact us if you have any questions.

Sincerely,

Christina Rink

Christma Rink

Project Manager/Senior Chemist

1,861 pages-DL Attachment 1 LDC #40330 (P.W. Grosser Consulting - Bohemia, NY / Former Computer Circuits, MAR1601) Category B VOA (TO-15 DATE VOA DATE LDC SDG# REC'D DUE (TO-15) -SIM) | w | s | w | A S A S Matrix: Air/Water/Soil 6 5 L1726012 01/30/18 02/20/18 0 01/30/18 02/20/18 0 В L1726929 0 01/30/18 | 02/20/18 | 7 5 L1746905 0 0 0 0 0 0 0 T/CR

Former Computer Circuits Site, NYSDEC

Site: Former Computer Circuits Site

Laboratory: Alpha Analytical, Inc.

Report No.: L1726012

Reviewer: Pei Geng and Christina Rink/Laboratory Data Consultants for P.W.

Grosser Consulting

Date: February 28, 2018

Samples Reviewed and Evaluation Summary

FIELD ID	LAB ID	FRACTIONS VALIDATED
SVE-NORTH (INF)	L1726012-02	VOA
IA-4	L1726012-03	VOA
IA-2	L1726012-04	VOA
IA-8	L1726012-05	VOA
IA-3	L1726012-06	VOA
IA-5	L1726012-07	VOA
IA-4DUP	L1726012-03DUP	VOA

Associated QC Samples(s):

Field/Trip Blanks: None Associated Field Duplicate pair: None Associated

The above-listed air samples were collected on July 26, 2017 and were analyzed for volatile organic compounds (VOCs) by method TO-15 and method TO-15 in selected ion monitoring (SIM) mode. The data validation was performed in accordance with the USEPA Region 2 *Analysis of Volatile Organic Compounds in Air Contained Canisters*, SOP HW-31, Revision 6 (June 2014) and the *USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review*, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

Former Computer Circuits Site, NYSDEC

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- Laboratory Control Sample (LCS) Results
- Internal Standards
- Field Duplicate Results
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

GC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All criteria were met.

Blanks

Contamination was not detected in the method blanks.

Former Computer Circuits Site, NYSDEC

A field blank was not associated with this sample set. Validation action was not required on this basis.

Surrogate Recoveries

All criteria were met.

MS/MSD Results

MS/MSD analyses were not required.

Laboratory Duplicate Results

Laboratory duplicate analysis was performed on sample IA-4 for VOC analyses. All criteria were met.

LCS Results

All criteria were met.

Internal Standards

All criteria were met.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Quantitation Limits and Data Assessment

No results were reported below the reporting limit (RL) and above the minimum detection limit (MDL) in the VOC analyses.

Dilutions were not required for VOC analyses.

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Client Project Name : P. W. Grosser

Lab ID Client ID

: MAR1601 : L1726012-02 : SVE-NORTH (INF)

Sample Matrix

Sample Location : 145 MARCUS BLVD : SOIL_VAPOR

Analytical Method : 48,TO-15 Lab File ID

Sample Amount

: R248832 : 250 ml

Lab Number Project Number : MAR1601 Date Collected

: L1726012 : 07/26/17 09:30

Date Received : 07/27/17 **Date Analyzed** : 07/30/17 02:37

Dilution Factor Analyst

: 1 : MB

Instrument ID

: AIRPIANO2

GC Column : RTX-1

		ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.335	0.200	••	1.66	0.989			
74-87-3	Chloromethane	0.296	0.200	••	0.611	0.413			
76-14-2	Freon-114	ND	0.200		ND	1.40	••	U U	
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		U	
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
75-00-3	Chloroethane	ND	0.200		ND	0.528		U	
64-17-5	Ethanol	6.65	5.00		12.5	9.42	••		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874	a.	u V	
67-64-1	Acetone	5.07	1.00		12.0	2.38			
75-69-4	Trichlorofluoromethane	0.332	0.200		1.87	1.12			
67-63-0	Isopropanol	10.1	0.500		24.8	1.23	••		
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		U U	
75-65-0	Tertiary butyl Alcohol	1.22	0.500		3.70	1.52			
75-09-2	Methylene chloride	ND .	0.500		ND	1.74		υ <i>(</i> /	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623	=-	U	
76-13-1	Freon-113	0.557	0.200		4.27	1.53			
156-60-5	trans-1,2-Dichloroethene	0.351	0.200		1.39	0.793			
75-34-3	1,1-Dichloroethane	0.534	0.200		2.16	0.809			
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U $\mathcal C$	
78-93-3	2-Butanone	ND	0.500		ND	1.47		u V	
156-59-2	cis-1,2-Dichloroethene	1.79	0.200		7.10	0.793			
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		u (/	
67-66-3	Chloroform	0.228	0.200		1.11	0.977			
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		u <i>U</i>	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	ND	0.200		ND	0.705		U	
-									

FEB 2 8 2018

Client : P. W. Grosser
Project Name : MAR1601
Lab ID : L1726012-02
Client ID : SVE-NORTH (

Client ID : SVE-NORTH (INF)
Sample Location : 145 MARCUS BLVD
Sample Matrix : SOIL_VAPOR

Analytical Method : 48,TO-15 Lab File ID : R248832

Sample Amount : 250 ml

Lab Number : L1726012
Project Number : MAR1601
Date Collected : 07/26/17 09:30
Date Received : 07/27/17
Date Analyzed : 07/30/17 02:37

Dilution Factor : 1 Analyst : MB

Instrument ID : AIRPIANO2

GC Column : RTX-1

Sample Amount . 250 mi					GC C	Jiuiiiii	. ILIX-1		
		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
71-55-6	1,1,1-Trichloroethane	0.884	0.200		4.82	1.09			
71-43-2	Benzene	ND	0.200		ND	0.639		U U	
56-23-5	Carbon tetrachloride	ND	0.200		ND	1.26		U /	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200	••	ND	1.34		U V	
123-91-1	1,4-Dioxane	0.315	0.200		1.14	0.721			
79-01-6	Trichloroethene	17.7	0.200		95.1	1.07			
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U <i>U</i>	
142-82-5	Heptane	ND	0.200		ND	0.820		υ	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500	••	ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200	-	ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200	-	ND	1.09		U	
108-88-3	Toluene	ND	0.200		ND	0.754		υ	
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		u 🕹	
127-18-4	Tetrachloroethene	1.11	0.200		7.53	1.36			
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		u $arphi$	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
S22-96-8	4-Ethyltoluene	ND	0.200		. ND	0.983		U	
108-67 - 8	1,3,5-Trimethylbenzene	ND	0.200	•	ND	0.983		u 🇸	

FEB 2 8 2018

ANALYTICA

Client **Project Name** : P. W. Grosser

: MAR1601

Date Collected

: L1726012 Project Number : MAR1601

Lab ID Client ID : L1726012-02

: SVE-NORTH (INF)

Sample Matrix

Sample Location : 145 MARCUS BLVD : SOIL_VAPOR

Analytical Method: 48,TO-15 Lab File ID

Sample Amount

: R248832

: 250 ml

Date Received Date Analyzed

Lab Number

: 07/26/17 09:30 : 07/27/17 : 07/30/17 02:37

Dilution Factor

: 1

Analyst Instrument ID : MB : AIRPIANO2

GC Column

: RTX-1

		_ ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		u <i>U</i>	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		u 🇸	

FEB 2 8 2018

ppbV

Client : P. W. Grosser
Project Name : MAR1601
Lab ID : L1726012-03

Client ID : IA-4

Sample Location : 145 MARCUS BLVD

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R248821
Sample Amount : 250 ml

Lab Number : L1726012
Project Number : MAR1601
Date Collected : 07/26/17 16:05
Date Received : 07/27/17

Date Received : 07/27/17 Date Analyzed : 07/29/17 20:10

Dilution Factor : 1 Analyst : MB

ug/m3

Instrument ID : AIRPIANO2 GC Column : RTX-1

CAS NO. **Parameter** Results RL MDL Results RL MDL Qualifier 75-71-8 Dichlorodifluoromethane 0.336 0.200 1.66 0.989 74-87-3 Chloromethane 0.704 0.413 0.200 --1.45 76-14-2 ND Freon-114 0.200 ND 1.40 U 106-99-0 1,3-Butadiene U ND 0.200 ND 0.442 -----74-83-9 Bromomethane ND 0.200 ND 0.777 U 75-00-3 Chloroethane ND 0.200 ND 0.528 --U --64-17-5 42.0 Ethanol 5.00 79.1 9.42 593-60-2 ND Vinyl bromide ND 0.200 --0.874 __ U 67-64-1 Acetone 13.4 1.00 31.8 2.38 --0.255 75-69-4 Trichlorofluoromethane 0.200 1.43 1.12 ----67-63-0 Isopropanol 18.7 0.500 --46.0 1.23 --75-65-0 Tertiary butyl Alcohol 0.701 0.500 2.13 1.52 --ND 75-09-2 Methylene chloride 0.500 ND 1.74 U 107-05-1 3-Chloropropene ND 0.200 ND 0.626 --U 75-15-0 Carbon disulfide ND 0.200 ND 0.623 U 76-13-1 Freon-113 ND 0.200 ND 1.53 U 156-60-5 trans-1,2-Dichloroethene ND 0.200 ND 0.793 U ND 0.200 ND 0.809 U 75-34-3 1,1-Dichloroethane ND ND 0.721 U 1634-04-4 Methyl tert butyl ether 0.200 78-93-3 2-Butanone 0.510 0.500 1.50 1.47 ND ND U 141-78-6 **Ethyl Acetate** 0.500 1.80 ND 0.977 U 67-66-3 Chloroform ND 0.200 ND ND 1.47 U 109-99-9 Tetrahydrofuran 0.500 0.200 1,2-Dichloroethane ND ND 0.809 U 107-06-2 U ND ND 0.705 n-Hexane 0.200 110-54-3 ND U ND 0.200 0.639 71-43-2 Benzene U 110-82-7 Cyclohexane ND 0.200 ND 0.688 ND 0.924 U 78-87-5 1,2-Dichloropropane ND 0.200

Client **Project Name** : P. W. Grosser : MAR1601

Lab ID

: L1726012-03

Client ID

: IA-4

Sample Location : 145 MARCUS BLVD

Sample Matrix Analytical Method: 48,TO-15 Lab File ID

: AIR

Sample Amount

: R248821 : 250 ml

Lab Number Project Number

: L1726012 : MAR1601

Date Collected Date Received

: 07/26/17 16:05

Date Analyzed

: 07/27/17 : 07/29/17 20:10

Dilution Factor

: 1

Analyst

: MB

Instrument ID

: AIRPIANO2

GC Column : RTX-1

Sample Amount . 250 mi					ac column		. 117	V- I	
		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		u <i>U</i>	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		u [
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U · V	
142-82-5	Heptane	0.962	0.200		3.94	0.820	••		
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908	•=	U <i>U</i>	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U /	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09	9 9	U 🗸	
108-88-3	Toluene	0.358	0.200		1.35	0.754			
591-78-6	2-Hexanone	ND	0.200		ND	0.820		u (
124-48-1	Dibromochloromethane	ND	0.200		NĐ	1.70		υ	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
108-90-7	Chlorobenzene	ND	0.200	94 M	ND	0.921		υ	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200	••	ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200	w w	ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200	••	ND	0.983	4 -	U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20	4	U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U ,	
37-68-3	Hexachlorobutadiene	· ND	0.200		ND	2.13		U V	

FEB 2 8 2018

Client : P. W. Grosser
Project Name : MAR1601
Lab ID : L1726012-04

Client ID : IA-2

Sample Location : 145 MARCUS BLVD

Sample Matrix
Analytical Method
Lab File ID
Sample Amount
: AIR
48,TO-15
: R248823
: R248823

Project Number : MAR1601

Date Collected : 07/26/17 16:10

Date Received : 07/27/17

Date Analyzed : 07/29/17 21:21

: L1726012

Dilution Factor : 1 Analyst : MB

Lab Number

Instrument ID : AIRPIANO2 GC Column : RTX-1

Sample Amount . 250 mi						Jiuiiiii	. nix-i		
		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.318	0.200		1.57	0.989			
74-87-3	Chloromethane	0.658	0.200		1.36	0.413			
76-14-2	Freon-114	ND	0.200		ND	1.40		U ()	
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U (
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
75-00-3	Chloroethane	ND	0.200	==	ND	0.528		U	
64-17-5	Ethanol	35.6	5.00		67.1	9.42			
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U (/	
67-64-1	Acetone	11.3	1.00		26.8	2.38			
75-69-4	Trichlorofluoromethane	0.327	0.200		1.84	1.12			
67-63-0	Isopropanol	26.0	0.500		63.9	1.23			
75-65-0	Tertiary butyl Alcohol	0.633	0.500		1.92	1.52			
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U V	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U	
75-15-0	Carbon disulfide	ND	0.200		. ND	0.623		U	
76-13-1	Freon-113	ND	0.200		ND	1.53	••	U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200	••	ND	0.809		บ	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		υΨ	
78-93-3	2-Butanone	0.578	0.500		1.70	1.47			
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		u <i>U</i>	
67-66-3	Chloroform	ND	0.200		ND	0.977	••	υ [
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
110-54-3	n-Hexane	ND	0.200		ND	0.705	••	U	
71-43-2	Benzene	ND	0.200		ND	0.639		U	
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U /	

FEB 2 8 2018

Client : P. W. Grosser **Project Name** : MAR1601 Lab ID

: L1726012-04

Client ID : IA-2

Sample Location : 145 MARCUS BLVD

Sample Matrix Analytical Method : 48,TO-15 Lab File ID

Sample Amount

: R248823 : 250 ml

: AIR

GC

Lab Number Project Number : MAR1601 **Date Collected**

: L1726012 : 07/26/17 16:10

Date Received : 07/27/17 **Date Analyzed** : 07/29/17 21:21

Dilution Factor : 1 Analyst : MB

Instrument ID : AIRPIANO2

Column	:	RTX-1
--------	---	-------

Campic Amount 1 200 mil					400	Jianin	. ICIX-1		
040 NO	Dawanatan	Danilla	ppbV		Deserte	ug/m3	- LIDI	0	
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		u U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		υ /	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		u L	
142-82-5	Heptane	0.320	0.200	==	1.31	0.820			
10061-01-5	cis-1,3-Dichloropropene	ND	0.200	==	ND	0.908		υ <i>Υ</i>	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		u 🎶	
108-88-3	Toluene	0.417	0.200		1.57	0.754			
591-78-6	2-Hexanone	ND	0.200		ND	0.820		u (/	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U 🎶	
100-42-5	Styrene	0.229	0.200		0.975	0.852			
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		u V	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U {	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		υ	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20	-	U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		υ /,	
37-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		u V	

FEB 2 8 2018

ppbV

Client : P. W. Grosser
Project Name : MAR1601
Lab ID : L1726012-05

Client ID : IA-8

Sample Location : 145 MARCUS BLVD

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R248824
Sample Amount : 250 ml

Lab Number : L1726012
Project Number : MAR1601
Date Collected : 07/26/17 16:25
Date Received : 07/27/17

Date Analyzed : 07/29/17 21:57

Dilution Factor : 1 Analyst : MB

ug/m3

Instrument ID : AIRPIANO2 GC Column : RTX-1

			ppov			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-71-8	Dichlorodifluoromethane	0.350	0.200		1.73	0.989		
74-87-3	Chloromethane	0.781	0.200		1.61	0.413		
76-14-2	Freon-114	ND	0.200		ND	1.40		U
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528		u 🗸
64-17-5	Ethanol	80.2	5.00		151	9.42		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874	••	u 🗸
67-64-1	Acetone	13.7	1.00		32.5	2.38		
75-69-4	Trichlorofluoromethane	0.206	0.200		1.16	1.12		
67-63-0	Isopropanol	5.49	0.500		13.5	1.23		
75-65-0	Tertiary butyl Alcohol	0.614	0.500		1.86	1.52		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		u <i>U</i>
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U /
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U
76-13-1	Freon-113	ND	0.200		ND	1.53		U
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U
1634-04-4	Methyl tert butyl ether	ND	0.200	-	ND	0.721		U $\sqrt{}$
78-93-3	2-Butanone	0.593	0.500		1.75	1.47		
141-78-6	Ethyl Acetate	0.748	0.500		2.70	1.80		
67-66-3	Chloroform	ND	0.200		ND	0.977		UV
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U /
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U
110-54-3	n-Hexane	ND	0.200	=	ND	0.705		U
71-43-2	Benzene	ND	0.200		ND	0.639		υ
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U ,
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U J

FEB 2 8 2018

Client **Project Name** : P. W. Grosser : MAR1601

Lab ID Client ID

: L1726012-05 : IA-8

Sample Location : 145 MARCUS BLVD

Sample Matrix Analytical Method : 48,TO-15

: AIR : R248824

Lab File ID Sample Amount

: 250 ml

Lab Number Project Number : MAR1601 Date Collected

: L1726012 : 07/26/17 16:25

Date Received

: 07/27/17

Date Analyzed

: 07/29/17 21:57

Dilution Factor

: 1

Analyst Instrument ID : MB : AIRPIANO2

GC Column

: RTX-1

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		u U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	ND	0.200		ND	0.820		U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		. ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		u 🎶	
108-88-3	Toluene	0.465	0.200	•=	1.75	0.754	==		
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U (
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54	4-	U	
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74	-4	U	
75-25-2	Bromoform	ND	0.200	nd Ma	ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852	-	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20	==	U	
95-50-1	1,2-Dichlorobenzene	· ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		υ	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U J	

FEB 2 8 2018

Client **Project Name** : P. W. Grosser : MAR1601 : L1726012-06

Lab ID Client ID

: IA-3

Sample Location : 145 MARCUS BLVD

Sample Matrix Analytical Method: 48,TO-15 Lab File ID

Sample Amount

: R248825

: AIR

: 250 ml

Lab Number Project Number

Date Collected

: L1726012 : MAR1601 : 07/26/17 16:20

Date Received : 07/27/17 **Date Analyzed** : 07/29/17 22:32

Dilution Factor : 1

Analyst : MB Instrument ID : AIRPIANO2

GC Column : RTX-1

Odini	pic Amount . 200 mi				40 0	Jidiiiii	. 1117	X-1
	_		ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-71-8	Dichlorodifluoromethane	0.292	0.200		1.44	0.989		
74-87-3	Chloromethane	0.732	0.200		1.51	0.413	***	
76-14-2	Freon-114	ND	0.200		ND	1.40		U U
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		υ /
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528		U 1
64-17-5	Ethanol	83.4	5.00	***	157	9.42		
593-60-2	Vinyl bromide	ND	0.200	P P	ND	0.874		U (/
67-64-1	Acetone	14.4	1.00		34.2	2.38		To the state of th
75-69-4	Trichlorofluoromethane	0.246	0.200		1.38	1.12		
67-63-0	Isopropanol	5.54	0.500	P#	13.6	1.23		
75-65-0	Tertiary butyl Alcohol	0.605	0.500	==	1.83	1.52		
75-09-2	Methylene chloride	0.664	0.500		2.31	1.74		
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		u <i>U</i>
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		υj
76-13-1	Freon-113	ND	0.200		ND	1.53		U
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U 🅢
78-93-3	2-Butanone	0.616	0.500		1.82	1.47		
141-78-6	Ethyl Acetate	0.741	0.500	••	2.67	1.80		
67-66-3	Chloroform	ND	0.200		ND	0.977		u (
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47	ee	U /
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U
110-54-3	n-Hexane	ND	0.200		ND	0.705	==	U
'1-43-2	Benzene	ND	0.200		ND	0.639		U
10-82-7	Cyclohexane	ND	0.200		ND	0.688		U
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U

FEB 2 8 2018

Client **Project Name**

: P. W. Grosser : MAR1601 : L1726012-06

Lab ID Client ID

: IA-3

Sample Location : 145 MARCUS BLVD

Sample Matrix : AIR Analytical Method : 48,TO-15 Lab File ID

: R248825

Sample Amount

: 250 ml

Lab Number

: L1726012 Project Number : MAR1601 : 07/26/17 16:20

Date Collected **Date Received**

: 07/27/17

Date Analyzed

: 07/29/17 22:32

Dilution Factor

: 1

Analyst

: MB

Instrument ID

: AIRPIANO2

GC Column : RTX-1

Janip	ie Amount . 250 mi				GC C	Jiulilli	. 1117	·- !
	_		ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		u <i>U</i>
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U (
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934	-	U
142-82-5	Heptane	ND	0.200	**	ND	0.820		U
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U
108-10-1	4-Methyl-2-pentanone	ND	0.500	==	ND	2.05		U
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U 4
108-88-3	Toluene	0.742	0.200		2.80	0.754		
591-78-6	2-Hexanone	ND	0.200		ND	0.820		u V
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U
100-41-4	Ethylbenzene	ND	0.200		ND	0.869	***	U
79601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U
75-25-2	Bromoform	ND	0.200		ND	2.07	## ##	U
100-42-5	Styrene	ND	0.200		ND	0.852	==	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U
95-47-6	o-Xylene	ND	0.200	••	ND	0.869		U
S22-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U
08-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U
00-44-7	Benzyl chloride	ND	0.200		ND	1.04		U
i41-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U
06-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U
5-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U
20-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48	==	U
37-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U J

Client : P. W. Grosser
Project Name : MAR1601
Lab ID : L1726012-07

Client ID : IA-5

Sample Location : 145 MARCUS BLVD

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R248826
Sample Amount : 250 ml

Lab Number : L1726012

Project Number : MAR1601

Date Collected : 07/26/17 16:15

Date Received : 07/27/17

Date Received : 07/27/17 Date Analyzed : 07/29/17 23:07

Dilution Factor : 1 Analyst : MB

Instrument ID : AIRPIANO2 GC Column : RTX-1

ppbV ug/m3 CAS NO. **Parameter** Results RL MDL Results RL MDL Qualifier 75-71-8 Dichlorodifluoromethane 0.337 0.200 1.67 0.989 74-87-3 Chloromethane 0.714 0.200 0.413 1.47 --76-14-2 Freon-114 ND 0.200 ND 1.40 U 106-99-0 1,3-Butadiene 0.200 0.442 U ND ND ----74-83-9 **Bromomethane** ND 0.200 ND 0.777 U Chloroethane ND 0.200 ND 0.528 U 75-00-3 ----36.4 5.00 68.6 9.42 64-17-5 Ethanol --593-60-2 Vinyl bromide ND 0.200 --ND 0.874 --U 67-64-1 Acetone 10.8 1.00 25.7 2.38 75-69-4 Trichlorofluoromethane 0.218 0.200 1.23 1.12 ---67-63-0 Isopropanol 3.06 0.500 7.52 1.23 75-65-0 **Tertiary butyl Alcohol** 0.547 0.500 1.66 1.52 75-09-2 Methylene chloride ND 0.500 ND 1.74 U ND 0.200 ND 0.626 U 107-05-1 3-Chloropropene 0.623 U 75-15-0 Carbon disulfide ND 0.200 ND 76-13-1 ND 0.200 ND 1.53 U Freon-113 156-60-5 trans-1,2-Dichloroethene ND 0.200 ND 0.793 U ND ND 0.809 U 75-34-3 1,1-Dichloroethane 0.200 U 1634-04-4 Methyl tert butyl ether ND 0.200 ND 0.721 2-Butanone ND 0.500 ND 1.47 U 78-93-3 1.80 141-78-6 **Ethyl Acetate** 0.595 0.500 2.14 ND ND 0.977 U 0.200 67-66-3 Chloroform U Tetrahydrofuran ND 0.500 ND 1.47 109-99-9 U ND 0.200 ND 0.809 107-06-2 1,2-Dichloroethane U ND 0.705 110-54-3 n-Hexane ND 0.200 U 71-43-2 Benzene ND 0.200 ND 0.639 U 110-82-7 Cyclohexane ND 0.200 ND 0.688 U 78-87-5 1,2-Dichloropropane ND 0.200 ND 0.924

Client **Project Name**

: P. W. Grosser : MAR1601 : L1726012-07

Lab ID Client ID

: IA-5

Sample Location : 145 MARCUS BLVD

Sample Matrix Analytical Method: 48,TO-15 Lab File ID

Sample Amount

: AIR : R248826 : 250 ml

Lab Number Project Number : MAR1601 **Date Collected**

: L1726012 : 07/26/17 16:15

Date Received : 07/27/17 **Date Analyzed** : 07/29/17 23:07

Dilution Factor

: 1 Analyst : MB

Instrument ID : AIRPIANO2

GC Column : RTX-1

Sample Amount . 230 mi					GC C	Jiulilli	. 117	N-1
	_		ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		u <i>U</i>
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U /
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U
142-82-5	Heptane	ND	0.200	-	ND	0.820		U
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U
79-00 - 5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		u 🍑
108-88-3	Toluene	0.361	0.200		1.36	0.754		
591-78-6	2-Hexanone	ND	0.200	••	ND	0.820		U ()
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U
106-93-4	1,2-Dibromoethane	ND	0.200	•=	ND	1.54		U
108-90-7	Chlorobenzene	ND	0.200		ND	0.921	-	U
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U
75-25-2	Bromoform	ND	0.200		ND	2.07		U
100-42-5	Styrene	ND	0.200		ND	0.852		U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37	••	U
95-47-6	o-Xylene	ND	0.200	40	ND	0.869		U
522-96-8	4-Ethyltoluene	ND	0.200	••	ND	0.983	-	U
08-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U
95-63-6	1,2,4-Trimethylbenzene	ND	0.200	90	ND	0.983	••	U
00-44-7	Benzyl chloride	ND	0.200		ND	1.04		U
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20	-	U
06-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U
20-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U
37-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		n A

: P. W. Grosser Client **Project Name** : MAR1601 : L1726012-03 Lab ID

Client ID : IA-4

Sample Location : 145 MARCUS BLVD Sample Matrix

: AIR

Analytical Method : 48,TO-15-SIM Lab File ID

: R248821

Sample Amount

: 250 ml

Lab Number Project Number

: L1726012 : MAR1601 : 07/26/17 16:05

Date Collected **Date Received**

: 07/27/17 : 07/29/17 20:10

Date Analyzed

: 1

Dilution Factor Analyst

: MB

Instrument ID

: AIRPIANO2

GC Column : RTX-1

		ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		u <i>Ç</i>
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		u 🗸
56-23-5	Carbon tetrachloride	0.076	0.020		0.478	0.126		
79-01-6	Trichloroethene	ND	0.020		ND	0.107		U V
127-18-4	Tetrachloroethene	ND	0.020		ND	0.136		<i>ا</i> ر

FEB 2 8 2018

Initials: @

Client : P. W. Grosser **Project Name** : MAR1601 Lab ID : L1726012-04 Client ID : IA-2

Sample Location : 145 MARCUS BLVD

Sample Matrix : AIR Analytical Method: 48,TO-15-SIM

Lab File ID Sample Amount : R248823 : 250 ml

Project Number : MAR1601 Date Collected **Date Received**

Lab Number

: 07/26/17 16:10 : 07/27/17

: L1726012

Date Analyzed : 07/29/17 21:21 **Dilution Factor** : 1

Analyst : MB

: AIRPIANO2 Instrument ID

GC Column : RTX-1

		ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		υ <i>Ο</i>
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		u J
71-55-6	1,1,1-Trichloroethane	0.024	0.020	-	0.131	0.109		
56-23-5	Carbon tetrachloride	0.075	0.020		0.472	0.126		
79-01-6	Trichloroethene	0.032	0.020		0.172	0.107		
127-18-4	Tetrachloroethene	ND	0.020		ND	0.136		υ (<i>)</i>
								•

FEB 2 8 2018

Client : P. W. Grosser Project Name : MAR1601 : L1726012-05 Lab ID

Client ID : IA-8

Sample Location : 145 MARCUS BLVD : AIR

Sample Matrix

Lab File ID

Analytical Method : 48,TO-15-SIM

: R248824 Sample Amount : 250 ml

Lab Number Project Number : MAR1601

: L1726012 : 07/26/17 16:25

Date Collected **Date Received Date Analyzed**

: 07/27/17 : 07/29/17 21:57

Dilution Factor : 1 Analyst

: MB

Instrument ID

: AIRPIANO2

GC Column : RTX-1

		ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		u <i>V</i>
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U /
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		u J
56-23-5	Carbon tetrachloride	0.077	0.020		0.484	0.126		
79-01-6	Trichloroethene	0.108	0.020		0.580	0.107		
127-18-4	Tetrachloroethene	0.031	0.020		0.210	0.136		

FEB 2 8 2018

Client : P. W. Grosser : MAR1601 Project Name Lab ID : L1726012-06

Client ID : IA-3

Sample Location : 145 MARCUS BLVD

Sample Matrix : AIR Analytical Method : 48,TO-15-SIM

Lab File ID

: R248825 Sample Amount : 250 ml

Lab Number **Project Number** Date Collected

: L1726012 : MAR1601 : 07/26/17 16:20

Date Received : 07/27/17 Date Analyzed : 07/29/17 22:32

Dilution Factor : 1

Analyst : MB : AIRPIANO2 Instrument ID

: RTX-1

GC Column

		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		υ <i>Ų</i>	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		U V	
56-23-5	Carbon tetrachloride	0.078	0.020		0.491	0.126	==		
79-01-6	Trichloroethene	0.114	0.020		0.613	0.107			
127-18-4	Tetrachloroethene	0.062	0.020		0.420	0.136			

FEB 2 8 2018

Client : P. W. Grosser **Project Name** : MAR1601 Lab ID : L1726012-07

Client ID : IA-5

Sample Location : 145 MARCUS BLVD

Sample Matrix : AIR

Analytical Method: 48,TO-15-SIM Lab File ID

: R248826

Sample Amount : 250 ml Lab Number Project Number : MAR1601 Date Collected

: L1726012 : 07/26/17 16:15

Date Received : 07/27/17 Date Analyzed : 07/29/17 23:07

Dilution Factor Analyst

: 1 : MB

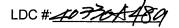
Instrument ID : AIRPIANO2

GC Column : RTX-1

		ppbV				ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		υψ
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		u 🍑
56-23-5	Carbon tetrachloride	0.077	0.020		0.484	0.126		
79-01-6	Trichloroethene	0.033	0.020		0.177	0.107		
127-18-4	Tetrachloroethene	0.048	0.020		0.325	0.136		

FEB 2 8 2018

	#: VALIDATIO #: VALIDATIO		ategory B	55 WORKSHEE		Page: / of
	ratory: <u>Alpha Analytical, Inc.</u>					Reviewer:/
/ETI	HOD: GC/MS Volatiles (EPA Method TO-	15)		·	2nd	Reviewer:
		,				
	samples listed below were reviewed for ea ation findings worksheets.	ich of the fo	ollowing valid	dation areas. Validati	ion findings are	noted in attache
						
	Validation Area			Comr	ments	
l.	Sample receipt/Technical holding times	A			~	
II.	GC/MS Instrument performance check	1		·		
111.	Initial calibration/ICV	AA	K=50	530.	10V=	30%
IV.	Continuing calibration	\rightarrow	cer	= 30)0	· · · · · · · · · · · · · · · · · · ·	
V.	Laboratory Blanks/Canister Blanks	AA	by ba	tch		
VI.	Field blanks	/N				
VII.	Surrogate spikes	N				
VIII.	Matrix spike/Matrix spike duplicates	NA				
IX.	Laboratory control samples	A	109			
X.	Field duplicates	N_{\perp}				
XI.	Internal standards	A				
XII.	Compound quantitation RL/LOQ/LODs	A				
XIII.	Target compound identification	À				
XIV.	System performance	A				
XV.	Overall assessment of data	A				
lote:	A = Acceptable ND = N N = Not provided/applicable R = Rin	o compounds sate eld blank	detected	D = Duplicate TB = Trip blank EB = Equipment bla	OTHER:	rce blank
	Client ID			Lab ID	Matrix	Date
1	SVE-SOUTH (INF)			L1726012-01	Air	07/26/17 -
2	SVE-NORTH (INF)			L1726012-02	Air	07/26/17
3	IA-4			L1726012-03	Air	07/26/17
4	IA-2			L1726012-04	Air	07/26/17
5	IA-8		<u>.</u>	L1726012-05	Air	07/26/17
6	IA-3			L1726012-06	Air	07/26/17
7	IA-5			L1726012-07	Air	07/26/17
3	IA-4DUP	· · ·		L1726012-03DUP	Air	07/26/17
9						
10						
lotes	:				T	
\perp						



VALIDATION FINDINGS CHECKLIST

Page: / of / Reviewer: 2nd Reviewer:

Method: Volatiles (EPA Method TO-15)

The tribution (E) / Motified (O 10)				
Validation Area	Yes	No	NA	Findings/Comments
I, Technical holding times	19.16	1		
Were all technical holding times met?				
Was canister pressure criteria met?				
II. GC/MS Instrument performance check		A THE		
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 24 hour clock criteria?				
IIIa. Initial calibration	15			The strain of the state of the
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 30%?				
IIIb. Initial calibration verificattion				
Was an initial calibration verification standard analyzed after every ICAL for each instrument?				
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
IV. Continuing calibration				and the state of t
Was a continuing calibration standard analyzed at least once every 24 hours for each instrument?				
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
V. Laboratory Blanks/Canister Blanks				
Was a laboratory blank associated with every sample in this SDG?	10			
Was a laboratory blank analyzed at least once every 24 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
Was a canister blank analyzed for every canister?				1200
Was there contamination in the canister blanks? If yes, please see the Canister Blanks validation completeness worksheet.				
VI. Field Blanks	$-\Delta$			
Were field blanks identified in this SDG?	$ \mathscr{E}' $			
Were target compounds detected in the field blanks?			1	
VII. Surrogate spikes (Optional)				
Were all surrogate percent recoveries (%R) within QC limits?	<u> </u>			
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII. Laboratory Duplicate				
Was a laboratory duplicate analyzed for this SDG?		`		
Were the relative percent differences (RPD) within the QC limits?				

VALIDATION FINDINGS CHECKLIST

Page: Jof Z Reviewer: Q 2nd Reviewer:

	т —			
Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within \pm 40% from the associated calibration standard?				
Were retention times within \pm 20.0 seconds from the associated calibration standard?				
XII. Compound quantitation	i je			
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.	/			
XV: Overall assessment of data		Ī		
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA Method TO-15)

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. isobutyi alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ, 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ .
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	ssss.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	TTTT.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-lsopropyltoluene	AAAA. Ethyl tert-butyl ether	บบบบ.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	vvv.

LDC #: 40330**5**48b

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

	Page:	_/	<u>_</u> of_	/
	Reviewer:		9	
2nd	Reviewer:		\supset	

METHOD: GC/MS VOA (EPA Method TO-15)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

A_{is} = Area of associated internal standard

average RRF = sum of the RRFs/number of standards

 A_x = Area of compound, C_x = Concentration of compound, S = Standard deviation of the RRFs

C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

X = Mean of the RRFs

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date		(Reference Internal Standard)	RRF (10 std)	RRF (10 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	7/10/17	Acetone	(1st internal standard)	1.183	1.183	1.3207	1.3207	22.21	22.22
			Benzene	(2nd internal standard)	1.044	1.044	1.0586	1.0586	7.19	7.20
			<u> Ethylhenzene</u>	(3rd internal standard)	6.330	6 330	6.3241	6 3241	3 35	3 35
2			Acetone	(1st internal standard)					·	
			Benzene	(2nd internal standard)						
			Ethylhenzene	(3rd internal standard)						
3			Acetone	(1st internal standard)						
			Benzene	(2nd internal standard)						
<u> </u>			<u> Fthylbenzene</u>	(3rd internal standard)						
4			Acetone ,	(1st internal standard)						
			Benzene	(2nd internal standard)						
			Ethylbenzene	(3rd internal standard)						

Comments:	Refer to Initial	Calibration findings	worksheet for list of	of qualifications ar	nd associated samp	les when reported	results do not agre	e within 10.0%	of the recalculated
results									
				<u> </u>					

LDC #: 40330448a

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page:_	
Reviewer:	\mathcal{U}
2nd Reviewer:	<u> </u>

METHOD: GC/MS VOA (EPA TO-15)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF A_x = Area of compound,

 A_x = Area of compound, A_{is} = Area of associated internal standard C_x = Concentration of compound, C_{is} = Concentration of internal standard

						Reported	Recalculated	Reported	Recalculated
#_	Standard ID	Calibration Date	Compound (Reference internal Standard)		Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	R248811	7/29/17	Acetone	(1st internal standard)	1.3207	1.319	1.319	0.2	0.1
			Benzene	(2nd internal standard)	1.0586	1.153	1.153	8.9	8.9
			Fthylbenzene	(3rd internal standard)	6 3241	6 013	6.013	4.9	4.9
2			Acetone	(1st internal standard)					
			Benzene	(2nd internal standard)					
			Ethylhenzene	(3rd internal standard)					
3			Acetone	(1st internal standard)					
			Benzene	(2nd internal standard)					
			Ethylbenzene	(3rd internal standard)					
4			Acetone ,	(1st internal standard)					
			Benzene	(2nd internal standard)					
			Ethylbenzene	(3rd internal standard)					

Comments:	Refer to C	ontinuing (<u>Calibration fir</u>	<u>ndings works</u>	heet for list	<u>of qualificatio</u>	ns and ass	<u>sociated sam</u>	<u>iples when r</u>	eported resul	<u>ts do not ag</u>	<u>ree within 1</u>	0.0% of the
recalculated	results.												

40330B48a CONCLC.wpd

LDC #: 40330 A + 80

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

<u>/Y N N/A</u> Were all reported res

Were all reported results recalculated and verified for all level IV samples?

Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration = $(A_{\nu})(I_{\nu})(DF)$ $(A_k)(RRF)(V_o)(%S)$ Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added, in nanograms (ng) RRF Relative response factor of the calibration standard. Volume or weight of sample pruged in milliliters (ml) ٧ or grams (g). Df Dilution factor. Percent solids, applicable to soils and solid %S matrices only.

Example: Sample I.D. 3, F: Conc. = (2/946)(10.00)(1) (2/462)(1.3207)(1)(1)= 13.41 PADV = x = 34.47= 31.8 PAM = 3

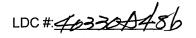
#	Sample ID	Compound	Reported Concentration	Concentration	Qualification
	3	" F	13.41	31.8	
		. 1			
		·			

LDC #	#: 40330A48b VALIDATIO	N COMP	LETENES	S WORKSHEET		Date: <u>49//</u>				
	DG #:_ <u>L1726012</u>									
Labor	_aboratory: <u>Alpha Analytical, Inc.</u> Reviewer: 2nd Reviewer:									
METL	HOD: GC/MS Volatiles (EPA Method TO-	15 QIM)			2nd	Reviewer:				
MICIT	OD. GC/M3 Volatiles (EFA Method 10-	13-31141)								
The s	amples listed below were reviewed for ea	ch of the fo	ollowing valida	ation areas. Validation	on findings are	noted in attached				
	tion findings worksheets.		_		_					
		T								
	Validation Area			Comn	nents					
l.	Sample receipt/Technical holding times	A								
II.	GC/MS Instrument performance check	A								
III.	Initial calibration/ICV	AA	1 30.	≤ 2 270.	19/5	30/0				
IV.	Continuing calibration	₽	cov.	≥ 300						
V.	Laboratory Blanks/Canister Blanks	AA	by ba	tole						
VI.	Field blanks	N								
VII.	Surrogate spikes	N								
VIII.	Matrix spike/Matrix spike duplicates	NA	/							
IX.	Laboratory control samples	\$	109	···						
X.	Field duplicates	N		···						
XI.	Internal standards	\triangle								
XII.	Compound quantitation RL/LOQ/LODs	A				***************************************				
XIII.	Target compound identification	A				· · · · · · · · · · · · · · · · · · ·				
XIV.	System performance	A								
XV.	Overall assessment of data	\triangle								
lote:	A = Acceptable ND = No	o compounds	detected	D = Duplicate	SB=Sou	ırce blank				
	N = Not provided/applicable R = Rins SW = See worksheet FB = Fie	sate eld blank		TB = Trip blank EB = Equipment blar	OTHER	:				
	- The state of the			EB Equipmont sidi						
	Client ID			Lab ID	Matrix	Date				
1	SVE SOUTH (INF)			L1726012-01	Air	07/26/17				
2	A-4		, and the displacements	L1726012-03	Air	07/26/17				
3	A-2			L1726012-04	Air	07/26/17				
4	A-8	L1726012-05	Air .	07/26/17						
5	A-3			L1726012-06	Air	07/26/17				
6	A-5	- 		L1726012-07	Air	07/26/17				
7	A-4DUP			L1726012-03DUP	Air	07/26/17				
8										
9										
10										
lotes:	T T		· · · · · · · · · · · · · · · · · · ·							
1			1 1		1 1	· I				

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA Method TO-15)

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chiorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	тттт.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	vvv.


LDC #: 40330A486

VALIDATION FINDINGS CHECKLIST

Page: _____ of ____ Reviewer: ______ 2nd Reviewer: ______

Method: Volatiles (EPA Method TO-15)

The circuit of the ci				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times			-12	
Were all technical holding times met?				
Was canister pressure criteria met?				
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 24 hour clock criteria?	/			
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 30%?				
IIIb. Initial calibration verificattion				
Was an initial calibration verification standard analyzed after every ICAL for each instrument?				
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
IV Continuing calibration			2	
Was a continuing calibration standard analyzed at least once every 24 hours for each instrument?	_	-		
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
V. Laboratory Blanks/Canister Blanks	i e			
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 24 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
Was a canister blank analyzed for every canister?				
Was there contamination in the canister blanks? If yes, please see the Canister Blanks validation completeness worksheet.				
VI. Field Blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VII. Surrogate spikes (Optional)	10.7%			
Were all surrogate percent recoveries (%R) within QC limits?			_	
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII. Laboratory Duplicate	_			
Was a laboratory duplicate analyzed for this SDG?				
Were the relative percent differences (RPD) within the QC limits?	/			

VALIDATION FINDINGS CHECKLIST

Page: of 2
Reviewer: 2
2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
IX: Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?		(/	
XI. Internal standards				The state of the s
Were internal standard area counts within \pm 40% from the associated calibration standard?				
Were retention times within \pm 20.0 seconds from the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?		•		
Were compound quantitation and RLs adjusted to reflect all sample dilutions applicable to level IV validation?				
XIII. Target compound identification	1			
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data			I	
Overall assessment of data was found to be acceptable.	/			

LDC #: 40330A48b

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	of
Reviewer:	' Q'
2nd Reviewer:	

METHOD: GC/MS VOA (EPA Method TO-15)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ average RRF = sum of the RRFs/number of standards A_x = Area of compound,

A_{is} = Area of associated internal standard

 $\hat{C_x}$ = Concentration of compound, S = Standard deviation of the RRFs C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (1.0 std)	RRF (1.0 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	7/10/17	Vinyl chloride (1st internal standard)	0.901	0.901	0.8729	0.8729	6.84	6.85
			Trichloroethene (2nd internal standard)	0.433	0.433	0.4459	0.4459	8.24	8.25
			Tetrachloroethene (3rd internal standard)	2 179	2 179	2 4020	2 4020	17.30	17.30
2			Vinyl chloride (1st internal standard)					<u>.</u>	
			Benzene (2nd internal standard)						
			Tetrachloroethene (3rd internal standard)						
3			Vinyl chloride (1st internal standard)						
			Benzene (2nd internal standard)						
			Tetrachloroethene (3rd internal standard)						
4			Vinyl chloride (1st internal standard)						
			Benzene (2nd internal standard)						
			Tetrachloroethene (3rd internal standard)						

Comments:	Refer to Initial (Calibration finding	s worksheet for	list of qualification	ons and associ	<u>ated samples v</u>	<u>when reported re</u>	sults do not agr	ee within 10.0	0% of the reca	alculated
results.											

LDC #: 40330A48b

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

	Page:_	<u>of</u>	
	Reviewer:_	<u>P6</u>	
2nd	Reviewer:_	~	نــ

METHOD: GC/MS VOA (EPA TO-15)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

 A_x = Area of compound, $\hat{C_x}$ = Concentration of compound,

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	R248813	7/29/17	Vinyl chloride (1st internal standard)	0.8729	0.937	0.937	7.3	7.3
			Benzene (2nd internal standard)	0.4459	0.441	0.441	1.1	1.0
			Tetrachloroethene (3rd internal standard)	2 4020	2 238	2 238	6.8	6.8
2			Vinyl chloride (1st internal standard)		L			
			Benzene (2nd internal standard)					
			Tetrachloroethene (3rd internal standard)					
3_			Vinyl chloride (1st internal standard)					
			Benzene (2nd internal standard)					
			Tetrachloroethene (3rd internal standard)	`				
4_			Vinyl chloride (1st internal standard)					
			Benzene (2nd internal standard)					
			Tetrachloroethene (3rd internal standard)					

Comments:	Refer to Continuing	Calibration finding	<u>s worksheet for li</u>	<u>st of qualification</u>	<u>s and associated</u>	<u>l samples when</u>	reported results	<u>do not agree with</u>	<u>in 10.0% of the</u>
recalculated	results.								

40330A48b_CONCLC.wpd

LDC #:4033048b

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	/of_/_
Reviewer:_	
2nd reviewer:_	

METHOD: GC/MS VOA (EPA Method TO-15)

Y/N/N/A Were all reported results recalculated and verified for all level IV samples?

YN N/A Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concer	ntratio	$pn = \frac{(A_s)(I_s)(DF)}{(A_s)(RRF)(V_o)(\%S)}$	Example:
A _x	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D.
A_is	=	Area of the characteristic ion (EICP) for the specific internal standard	
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = $(45)(0.45)($)
RRF	=	Relative response factor of the calibration standard.	
V _o	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).	= 0.03203 Aprov x 13/2447
Df	=	Dilution factor.	= 0.170 HJus
%S	==	Percent solids, applicable to soils and solid matrices only.	$\gamma = \gamma = \gamma = \gamma$

#	Sample ID	Compound	Reported Concentration	Calculated Conceptration	Qualification
	43	· · · <u> </u>	0.032	0.172	
		1			
			·		
				·	
					`

Site:

Former Computer Circuits Site

Laboratory:

Alpha Analytical, Inc.

Report No.:

L1726929

Reviewer:

Pei Geng and Christina Rink/Laboratory Data Consultants for P.W.

Grosser Consulting

Date:

February 28, 2018

Samples Reviewed and Evaluation Summary

FIELD ID

LAB ID

FRACTIONS VALIDATED

SVE-SOUTH (INF)

L1726929-01

VOA

Associated QC Samples(s):

Field/Trip Blanks:

None Associated

Field Duplicate pair:

None Associated

The above-listed air sample was collected on August 2, 2017 and was analyzed for volatile organic compounds (VOCs) by method TO-15. The data validation was performed in accordance with the USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6 (June 2014) and the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- Laboratory Control Sample (LCS) Results
- Internal Standards
- Field Duplicate Results
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

GC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

All criteria were met.

Blanks

Contamination was not detected in the method blanks.

A field blank was not associated with this sample set. Validation action was not required on this basis.

Surrogate Recoveries

All criteria were met.

MS/MSD Results

MS/MSD analyses were not required.

Laboratory Duplicate Results

A laboratory duplicate as not associated with the sample set. Validation was not required on this basis.

LCS Results

All criteria were met.

Internal Standards

All criteria were met.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Quantitation Limits and Data Assessment

No results were reported below the reporting limit (RL) and above the minimum detection limit (MDL) in the VOC analyses.

Dilutions were not required for VOC analyses.

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1726929-01

Client ID

: SVE-SOUTH (INF)

Sample Location

: 145 MARCUS BLVD, HAUPPAUG

Sample Matrix Analytical Method : 48,TO-15

: SOIL_VAPOR

Lab File ID

: R153829

Sample Amount

: 250 ml

Lab Number Project Number : MAR1701

: L1726929

Date Collected **Date Received**

: 08/02/17 13:30

Date Analyzed

: 08/03/17 : 08/07/17 18:49

Dilution Factor

: 1

Analyst

: MB

Instrument ID

: AIRPIANO1

GC Column

: RTX-1

		ppbV			ug/m3			• •
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-71-8	Dichlorodifluoromethane	0.346	0.200	- P	1.71	0.989		
74-87-3	Chloromethane	0.603	0.200		1.25	0.413		
76-14-2	Freon-114	ND	0.200		ND	1.40		u Y
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		U
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528		u 🔱
64-17-5	Ethanol	23.5	5.00		44.3	9.42		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		u 🗸
67-64-1	Acetone	60.7	1.00		144	2.38		
75-69-4	Trichlorofluoromethane	0.232	0.200		1.30	1.12		
67-63-0	Isopropanol	4.34	0.500		10.7	1.23		
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		υ (
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		u U
75-09-2	Methylene chloride	0.676	0.500		2.35	1.74		
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U U
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U
76-13-1	Freon-113	ND	0.200	-	ND	1.53		U
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U V
78-93-3	2-Butanone	11.3	0.500		33.3	1.47		
156-59-2	cis-1,2-Dichloroethene	ND	0.200		ND	0.793		υŲ
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U
67-66-3	Chloroform	ND	0.200	41 84	ND	0.977		υ
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U
110-54-3	n-Hexane	ND	0.200		ND	0.705		u J

FEB 2 8 2018

militaria de la constitución de

Page 40 of 323

Initials: CR

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1726929-01

Client ID

: SVE-SOUTH (INF)

Sample Location

: 145 MARCUS BLVD, HAUPPAUG

Sample Matrix Analytical Method: 48,TO-15

: SOIL_VAPOR

Lab File ID

: R153829

Sample Amount

: 250 ml

Lab Number Project Number

: L1726929 : MAR1701

Date Collected Date Received

: 08/02/17 13:30

Date Analyzed

: 08/03/17 : 08/07/17 18:49

Dilution Factor

: 1

Analyst

: MB

Instrument ID

: AIRPIANO1

GC Column

: RTX-1

•		ppbV ug/m3				•		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
71-55-6	1,1,1-Trichloroethane	ND	0.200		ND	1.09		u U
71-43-2	Benzene	0.288	0.200		0.920	0.639		
56-23-5	Carbon tetrachloride	ND	0.200		ND	1.26		U <i>O</i>
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U
75-27-4	Bromodichloromethane	. ND	0.200		ND	1.34		U
123-91-1	1,4-Dioxane	ND	0.200		NĎ	0.721		u J
79-01-6	Trichloroethene	2.96	0.200		15.9	1.07	**	
540-84-1	2,2,4-Trimethylpentane	ND	0.200	• •	ND	0.934		υ (/
142-82-5	Heptane	ND	0.200		ND	0.820	•=	U
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U V
108-10-1	4-Methyl-2-pentanone	0.831	0.500		3.41	2.05	,	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		u <i>(</i>)
79-00-5	1,1,2-Trichloroethane	ND	0.200	-	ND	1.09		u V
108-88-3	Toluene	0.347	0.200		1.31	0.754		
591-78-6	2-Hexanone	5.00	0.200		20.5	0.820		
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		u <i>U</i>
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		u U
127-18-4	Tetrachloroethene	0.571	0.200		3.87	1.36		
108-90-7	Chlorobenzene	ND	0.200	= #	ND	0.921		u U
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U
75-25-2	Bromoform	ND	0.200	***************************************	ND	2.07		υ
100-42-5	Styrene	ND	0.200		ND	0.852	4 •	U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U
95-47-6	o-Xylene	ND	0.200		ND	0.869		U
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983	*	U
	-							

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1726929-01

Client ID

: SVE-SOUTH (INF)

Sample Matrix

Sample Location : 145 MARCUS BLVD, HAUPPAUG

Analytical Method: 48,TO-15

: SOIL_VAPOR

Lab File ID

: R153829

Sample Amount

: 250 ml

Lab Number **Project Number**

: L1726929 : MAR1701

Date Collected

: 08/02/17 13:30

Date Received

: 08/03/17

Date Analyzed

: 08/07/17 18:49

Dilution Factor Analyst

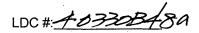
: 1 : MB

Instrument ID

: AIRPIANO1

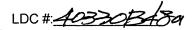
άC	Column	

: RTX-1


		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	***************************************
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		u <i>Ų</i>	
100-44-7	Benzyl chloride	ND	0.200	= in	ND	1.04		U	***************************************
541-73-1	1,3-Dichlorobenzene	ND	0.200	• •	ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U _	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	

FEB 2 8 2018

Initials: CR


SDG#	:40330B48aVALIDATIO ::L1726929 atory:_Alpha Analytical, Inc		PLETENES: ategory B	S WORKSHEET	J	Date: 49// Page: of / Reviewer: Reviewer:
/ETH	OD: GC/MS Volatiles (EPA Method TO-	15)			Zila	ACTIONOL.
	imples listed below were reviewed for eation findings worksheets.	ach of the fo	ollowing valida	ation areas. Validatio	on findings are	noted in attached
	Validation Area			Comn	nents	
<u>l.</u>	Sample receipt/Technical holding times	1				
II.	GC/MS Instrument performance check	A				
III.	Initial calibration/ICV	AA	RS0<	300.10	V ≤ 30/	3
IV.	Continuing calibration	A			•	
V.	Laboratory Blanks/Canister Blanks	AA	bx bat	cb		
VI.	Field blanks	N				
VII.	Surrogate spikes	N				,
VIII.	Matrix spike/Matrix spike duplicates	\downarrow				
IX.	Laboratory control samples	A	100			
Χ.	Field duplicates	N				
XI.	Internal standards	A				
XII.	Compound quantitation RL/LOQ/LODs	A				
XIII.	Target compound identification	A				
XIV.	System performance	A				
XV.	Overall assessment of data	1				
te:	A = Acceptable ND = N N = Not provided/applicable R = Rir	lo compounds nsate ield blank	s detected	D = Duplicate TB = Trip blank EB = Equipment blar	OTHER:	rce blank
c	lient ID			Lab ID	Matrix	Date
s	VE-SOUTH (INF)			L1726929-01	Air	08/02/17
\perp						
		-m				
				<u> </u>		
tes:						
+		•				
+						
\bot						

VALIDATION FINDINGS CHECKLIST

Method: Volatiles (EPA Method TO-15)

The street volatiles (El 71 West of 10)				
Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
Were all technical holding times met?	1			
Was canister pressure criteria met?				
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 24 hour clock criteria?				
IIIa Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 30%?				
IIIb. Initial calibration verificattion				
Was an initial calibration verification standard analyzed after every ICAL for each instrument?				
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
IV. Continuing calibration		1,131		
Was a continuing calibration standard analyzed at least once every 24 hours for each instrument?		- '		
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
V. Laboratory Blanks/Canister Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 24 hours for each matrix and concentration?		_		
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
Was a canister blank analyzed for every canister?		•		
Was there contamination in the canister blanks? If yes, please see the Canister Blanks validation completeness worksheet.				
VI. Field Blanks	(4) (1) (1)			
Were field blanks identified in this SDG?		/		
Were target compounds detected in the field blanks?				
VII. Surrogate spikes (Optional)				
Were all surrogate percent recoveries (%R) within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				
VIII. Laboratory Duplicate			L	e seed
Was a laboratory duplicate analyzed for this SDG?				
Were the relative percent differences (RPD) within the OC limits?			/	

VALIDATION FINDINGS CHECKLIST

Page: 2 of 2 Reviewer: 2

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples	39,22		ug u	
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates	714 114			
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI Internal standards	7 2 (2)			
Were internal standard area counts within \pm 40% from the associated calibration standard?				
Were retention times within \pm 20.0 seconds from the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within \pm 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?	1		.,	
Were chromatogram peaks verified and accounted for?				
XIV. System performance			4	
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA Method TO-15)

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
			III. II-butyiberizene	CCCC.1-Cnioronexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	QQQQ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	ттт.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-isopropyltoluene	AAAA. Ethyl tert-butyl ether	UUUU.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	ww.

LDC #: 40330B48b

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	(of
Reviewer:	9
2nd Reviewer:	~

METHOD: GC/MS VOA (EPA Method TO-15)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

%RSD = 100 * (S/X)

 A_x = Area of compound, C_x = Concentration of compound, S = Standard deviation of the RRFs

X = Mean of the RRFs

 A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)		RRF (10 std)	RRF (10 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	7/12/17	Acetone (1	1st internal standard)	0.838	0.838	0.8850	0.8850	19.30	19.32
	!		Benzene (2	nd internal standard)	0.986	0.986	0.9785	0.9785	4.31	4.31
			Ethylbenzene (3	3rd internal standard)	6.278	6 278	6 2400	6 240	1 82	1 82
2			Acetone (1	1st internal standard)						
			Benzene (2	nd internal standard)						
			Ethylhenzene (3	3rd internal standard)						
3			Acetone (*	1st internal standard)						
			Benzene (2	2nd internal standard)						
			Ethylbenzene (3	3rd internal standard)						
4			Acetone , (1st internal standard)						
1.7			Benzene (2	2nd internal standard)						
			Ethylbenzene (3	3rd internal standa <u>rd)</u>						

Comments:	Refer to Initial	Calibration find	<u>dings worksheet f</u>	or list of qualification	ons and associat <u>ed</u>	<u>d samples when r</u>	<u>reported results (</u>	<u>do not agree within</u>	10.0% of the rec	alculated
results.								_		

LDC #: 40330B48a

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

	Page:_	of /	
	Reviewer:_	0	_
2nd	Reviewer:_	\bigcirc	:

METHOD: GC/MS VOA (EPA TO-15)

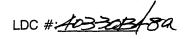
The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

RRF = continuing calibration RRF


 A_{x} = Area of compound,

A_{is} = Area of associated internal standard C_{is} = Concentration of internal standard C_x = Concentration of compound,

Reported Recalculated Reported Recalculated Calibration Compound (Reference internal Average RRF RRF **RRF** %D %D Standard ID Date Standard) (initial) (CC) (CC) R153824 8/7/17 (1st internal standard) 0.8850 1.033 Acetone 1.033 16.7 16.8 (2nd internal standard) 0.9785 Benzene 1.004 1.004 2.6 2.6 Ethylbenzene (3rd internal standard) 6 2400 5.376 5.376 13.8 13.8 (1st internal standard) 2 Acetone Benzene (2nd internal standard) **Ethylbenzene** (3rd internal standard) Acetone 3 (1st internal standard) Benzene (2nd internal standard) (3rd internal standard) Ethylhenzene Acetone (1st internal standard) (2nd internal standard) Benzene Ethylbenzene (3rd internal standard)

Comments: _	Refer to Continuing	Calibration findings	worksheet for list	of qualifications	and associated sa	imples when r	eported results	do not agre	e within 1	10.0% of the
recalculated	results.									

40330B48a_CONCLC.wpd

METHOD: GC/MS VOA (EPA Method TO-15)

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	of
Reviewer:_	9
2nd reviewer:	
· ·	

AN	N/A	Were all recalculated results for detected	d target compounds agree within 10.0% of the reported results
Conce	entratio	$n = \frac{(A_{\rm b})(I_{\rm s})(DF)}{(A_{\rm b})(RRF)(V_{\rm o})(\%S)}$	Example:
A_{x}	=	Area of the characteristic ion (EICP) for the compound to be measured	Sample I.D
A_{is}	=	Area of the characteristic ion (EICP) for the specific internal standard	7 (77)
l _s	=	Amount of internal standard added in nanograms (ng)	Conc. = $(8/8/1/)$ ((6.880) () ()
RRF	· =	Relative response factor of the calibration standard.	58
V _o	=	Volume or weight of sample pruged in milliliters (ml) or grams (g).	= 60.66 ppb/ X24.47
Df .	=	Dilution factor.	.1-0.1
%S	===	Percent solids, applicable to soils and solid matrices only.	= 143.8 /4m >

Were all reported results recalculated and verified for all level IV samples?

#	Sample ID	Compound	Reported Concentration	Concentration	Qualification
		F	60.7	144	
	÷				
			·		
					·

Site:

Former Computer Circuits Site

Laboratory:

Alpha Analytical, Inc.

Report No.:

L1746905

Reviewer:

Pei Geng and Christina Rink/Laboratory Data Consultants for P.W.

Grosser Consulting

Date:

February 28, 2018

Samples Reviewed and Evaluation Summary

LAB ID	FRACTIONS VALIDATED
L1746905-01	VOA
L1746905-02	VOA
L1746905-03	VOA
L1746905-04	VOA
L1746905-05	VOA
L1746905-06	VOA
L1746905-07	VOA
L1746905-05DUP	VOA
	L1746905-01 L1746905-02 L1746905-03 L1746905-04 L1746905-05 L1746905-06 L1746905-07

Associated QC Samples(s):

Field/Trip Blanks:

None Associated

Field Duplicate pair:

None Associated

The above-listed air samples were collected on December 19, 2017 and were analyzed for volatile organic compounds (VOCs) by method TO-15 and method TO-15 in selected ion monitoring (SIM) mode. The data validation was performed in accordance with the USEPA Region 2 Analysis of Volatile Organic Compounds in Air Contained Canisters, SOP HW-31, Revision 6 (June 2014) and the USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, EPA 540-R-2017-002 (January 2017), modified as necessary to accommodate the non-CLP methodologies used.

The organic data were evaluated based on the following parameters:

- Data Completeness
- Holding Times and Sample Preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tunes
- Initial and Continuing Calibrations
- Blanks
- Surrogate Recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results
- Laboratory Duplicate Results
- Laboratory Control Sample (LCS) Results
- Internal Standards
- Field Duplicate Results
- Quantitation Limits and Data Assessment
- Sample Quantitation and Compound Identification

Overall Evaluation of Data and Potential Usability Issues

All results are usable as reported or usable with minor qualification due to sample matrix and laboratory quality control outliers.

The validation findings were based on the following information.

Data Completeness

The data package was complete as defined under the requirements for the NYSDEC ASP category B laboratory deliverables.

Holding Times and Sample Preservation

All criteria were met.

GC/MS Tunes

All criteria were met.

Initial and Continuing Calibrations

Initial Calibration:

All criteria were met.

Continuing Calibration:

Compounds that did not meet criteria are summarized in the following table.

Date	Instrument ID	Compound	CC %D	Associated Samples		Validation Action
12/27/17	R156356	1,2,4-Trichlorobenzene	30.1	SVE-SOUTH SVE-NORTH IA-4 IA-2 IA-8 IA-3 IA-5	XX	UJ nondetects

- X = Initial calibration (IC) relative standard deviation (%RSD) > 30; estimate (J/UJ) positive and nondetect results.
- XX = Continuing calibration (CC) percent difference (%D) > 30; estimate (J/UJ) positive and nondetect results.
- SS = Second source verification percent difference (%D) > 30; estimate (J/UJ) positive and nondetect results.
- += Response factor (RRF) < validation criteria; estimate (J/UJ) positive and nondetect results.

The results for the samples listed above were estimated due to continuing calibration exceedances. The bias cannot be determined. The results can be used for project objectives as nondetects with estimated quantitation limits (UJ) which may have a minor impact on the data usability.

Blanks

Contamination was not detected in the method blanks.

A field blank was not associated with this sample set. Validation action was not required on this basis.

Surrogate Recoveries

All criteria were met.

MS/MSD Results

MS/MSD analyses were not required.

Laboratory Duplicate Results

Laboratory duplicate analyses were performed on sample IA-8 for VOC analyses. The following table lists the compounds recovered outside of control limits in the laboratory duplicate analyses and the resulting actions.

	RPD		
Compound	(Limits)	Affected Sample	Validation Action
Dichlorodifluoromethane	36 (≤25)	IA-8	J detect

The dichlorodifluoromethane result for the sample listed above was estimated due to laboratory duplicate relative percent difference exceedance. The bias cannot be determined. The result can be used for project objectives as detects with estimated an estimated value (J) which may have a minor impact on the data usability.

LCS Results

All criteria were met.

Internal Standards

All criteria were met.

Field Duplicate Results

A field duplicate pair was not associated with this sample set. Validation action was not required on this basis.

Quantitation Limits and Data Assessment

No results were reported below the reporting limit (RL) and above the minimum detection limit (MDL) in the VOC analyses.

Dilutions were not required for VOC analyses.

Sample Quantitation and Compound Identification

Calculations were spot-checked; no discrepancies were noted.

DATA VALIDATION QUALIFIERS

- U The analyte was analyzed for, but due to blank contamination was flagged as nondetect (U). The result is usable as a nondetect.
- J Data are flagged (J) when a QC analysis fails outside the primary acceptance limits. The qualified "J" data are not excluded from further review or consideration. However, only one flag (J) is applied to a sample result, even though several associated QC analyses may fail. The 'J' data may be biased high or low or the direction of the bias may be indeterminable.
- UJ The analyte was not detected above the reported sample quantitation limit. Data are flagged (UJ) when a QC analysis fails outside the primary acceptance limits. The qualified "UJ" data are not excluded from further review or consideration. However, only one flag is applied to a sample result, even though several associated QC analyses may fail. The 'UJ' data may be biased low.
- JN The analysis indicates the presence of a compound that has been "tentatively identified" (N) and the associated numerical value represents its approximate (J) concentration.
- R Data rejected (R) on the basis of an unacceptable QC analysis should be excluded from further review or consideration. Data are rejected when associated QC analysis results exceed the expanded control limits of the QC criteria. The rejected data are known to contain significant errors based on documented information. The data user must not use the rejected data to make environmental decisions. The presence or absence of the analyte cannot be verified.

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-01

Client ID

: SVE-SOUTH

Sample Location : 145 MARCUS BLVD, HAUPPAUG

Sample Matrix Analytical Method: 48,TO-15

: SOIL_VAPOR

Lab File ID

: R156376

Sample Amount

: 250 ml

Lab Number Project Number : L1746905

Date Collected

: MAR1701 : 12/19/17 10:35

Date Received

: 12/20/17

Date Analyzed

: 12/28/17 01:42

Dilution Factor

: 1

Analyst

: RY

Instrument ID

: AIRPIANO1

GC Column

: RTX-1

			ppbV		ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
			-			•		
75-71-8	Dichlorodifluoromethane	0.401	0.200		1.98	0.989		
74-87-3	Chloromethane	0.506	0.200	••	1.04	0.413		
76-14-2	Freon-114	ND	0.200		ND	1.40		U <i>Ç</i>
75-01-4	Vinyl chloride	ND	0.200		ND	0.511	•-	. υ
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528		u $\sqrt{}$
64-17-5	Ethanol	9.37	5.00		17.7	9.42		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874	••	u 🗸
67-64-1	Acetone	4.57	1.00		10.9	2.38	,	
75-69-4	Trichlorofluoromethane	0.289	0.200	,	1.62	1.12	# -	
67-63-0	Isopropanol	1.77	0.500		4.35	1.23		
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		u <i>U</i>
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U (
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U
107-05-1	3-Chloropropene	ND	0.200	==	ND	0.626		U
75-15-0	Carbon disulfide	·ND	0.200		ND	0.623		U
76-13-1	Freon-113	· ND	0.200		ND	1.53		U
156-60-5	trans-1,2-Dichloroethene	ND	0.200	-	ND	0.793		U
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		Ú
78-93-3	2-Butanone	ND	0.500	#	ND	1.47		U
156-59-2	cis-1,2-Dichloroethene	ND	0.200	—	ND	0.793		U
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80	==	U
67-66-3	Chloroform	ND	0.200		ND	0.977		U
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U
107-06-2	1,2-Dichloroethane	ND	0.200		ND ·	0.809		U
110-54-3	n-Hexane	ND	0.200		ND	0.705		u J/

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-01

Client ID

: SVE-SOUTH

Sample Location Sample Matrix

: 145 MARCUS BLVD, HAUPPAUG

Analytical Method: 48,TO-15

: SOIL_VAPOR

Lab File ID

: R156376

Sample Amount

: 250 ml

Lab Number Project Number

: L1746905 : MAR1701

Date Collected **Date Received**

: 12/19/17 10:35

Date Analyzed

: 12/20/17 : 12/28/17 01:42

Dilution Factor

: 1

Analyst

: RY

Instrument ID

: AIRPIANO1

GC Column

: RTX-1

•	ic Amount . 200 mi				400		. 1117	
	-	-	ppbV		-	ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
71-55-6	1,1,1-Trichloroethane	ND	0.200		ND	1.09		u <i>O</i>
71-43-2	Benzene	0.255	0.200		0.815	0.639		***************************************
56-23-5	Carbon tetrachloride	ND	0.200		ND	1.26	••	U <i>(</i>)
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U
78-87-5	1,2-Dichloropropane	ND .	0.200		ND	0.924		U
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U
123-91-1	1,4-Dioxane	ND	0.200	* =	ND	0.721		u V
79-01-6	Trichloroethene	0.753	0.200		4.05	1.07	•	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		υV
142-82-5	Heptane	ND	0.200		ND	0.820		U \
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U
108-10-1	4-Methyl-2-pentanone	ND	0.500	= *	ND ·	2.05		U
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		, ND	0.908		U
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		u 🍑
108-88-3	Toluene	0.390	0.200		1.47	0.754		
91-78-6	2-Hexanone	ND	0.200		ND	0.820		υ V
24-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U /
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U
127-18-4	Tetrachloroethene	ND	0.200		ND	1.36		U
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		υ
179601-23-1	p/m-Xylene	ND	0.400		· ND	1.74		U
75-25-2	Bromoform	ND	0.200		ND	2.07		U
100-42-5	Styrene	ND	0.200		ND	0.852		U
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U
5-47-6	o-Xylene	ND	0.200		ND	0.869		U
22-96-8	4-Ethyltoluene	. ND	0.200		ND	0.983		U
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U \ /

Client **Project Name** : P. W. Grosser

: COMPUTER CIRCUITS

Lab ID Client ID : L1746905-01 : SVE-SOUTH

Sample Location

: 145 MARCUS BLVD, HAUPPAUG

Sample Matrix Analytical Method: 48,TO-15

: SOIL_VAPOR

Lab File ID Sample Amount : R156376

: 250 ml

Lab Number

: L1746905 : MAR1701

Project Number Date Collected

: 12/19/17 10:35

Date Received

: 12/20/17 : 12/28/17 01:42

Date Analyzed Dilution Factor

: 1

Analyst

: RY

Instrument ID GC Column

: AIRPIANO1

: RTX-1

			ppbV		ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	***************************************
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		u 05	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U V	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U	
106-46-7	1,4-Dichlorobenzene	ND	0.200	.==	ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200	==	ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200	==	ND	2.13		U	

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-02

Client ID

: SVE-NORTH

Sample Location

: 145 MARCUS BLVD, HAUPPAUG

Sample Matrix Analytical Method: 48,TO-15

: SOIL_VAPOR

Lab File ID

: R156377

Sample Amount

: 250 ml

Lab Number **Project Number**

: L1746905 : MAR1701

Date Collected Date Received : 12/19/17 10:15

Date Analyzed

: 12/20/17

Dilution Factor

: 12/28/17 02:14

Analyst

: 1 : RY

Instrument ID

: AIRPIANO1

GC Column : RTX-1

CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-71-8	Dichlorodifluoromethane	0.590	0.200		2.92	0.989		
74-87-3	Chloromethane	0.265	0.200		0.547	0.413		

75-71-8	Dichlorodifluoromethane	0.590	0.200		2.92	0.989		
74-87-3	Chloromethane	0.265	0.200		0.547	0.413		
76-14-2	Freon-114	ND	0.200		ND	1.40		Ù U
75-01-4	Vinyl chloride	ND	0.200		ND	0.511		U
106-99-0	1,3-Butadiene	ND	0.200	***	ND	0.442		U
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528		U
64-17-5	Ethanol	ND	5.00	4	ND	9.42		U
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		u 🍑
67-64-1	Acetone	6.32	1.00		15.0	2.38		
75-69-4	Trichlorofluoromethane	0.424	0.200		2.38	1.12		
67-63-0	Isopropanol	4.65	0.500		11.4	1.23		
75-35-4	1,1-Dichloroethene	ND	0.200		ND	0.793		u <i>U</i>
75-65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		U
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U
75-15-0	Carbon disulfide	ND	0.200	-*	ND	0.623		u V
76-13-1	Freon-113	0.719	0.200	·-	5.51	1.53		
156-60-5	trans-1,2-Dichloroethene	ND .	0.200		ND	0.793	7.0	u V
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0,809	1	U
1634-04-4	Methyl tert butyl ether	ND	0.200	**	ND	0.721		U
78-93-3	2-Butanone	ND	0.500		ND	1.47		u \downarrow
156-59-2	cis-1,2-Dichloroethene	0.213	0.200		0.845	0.793		
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		u (/
67-66-3	Chloroform	ND	0.200		ND	0.977		U
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U
110-54-3	n-Hexane	ND	0.200		ND	0.705	,	u $\sqrt{}$

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-02

Client ID

: SVE-NORTH

Sample Location

: 145 MARCUS BLVD, HAUPPAUG

Sample Matrix Analytical Method: 48,TO-15

: SOIL_VAPOR

Lab File ID

: R156377

Sample Amount

: 250 ml

Lab Number **Project Number**

: L1746905 : MAR1701

Date Collected Date Received

: 12/19/17 10:15

: 12/20/17

Date Analyzed

: 12/28/17 02:14

Dilution Factor

: 1

Analyst Instrument ID : RY

: AIRPIANO1 X-1

GC Column : RTX		-	
	GC Column	:	RT

Sample Amount . 250 mi					GC C	Julili	: UIV-1		
			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
71-55-6	1,1,1-Trichloroethane	0.676	0.200		3.69	1.09			
71-43-2	Benzene	ND	0.200		ND	0.639		u <i>U</i>	
56-23-5	Carbon tetrachloride	ND	0.200		ND	1.26		U	
110-82-7	Cyclohexane	ND	0.200	**	ND	0.688		V	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U V	
79-01-6	Trichloroethene	8.98	0.200		48.3	1.07			
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		u U	
142-82-5	Heptane	ND	0.200		ND	0.820		U /	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	ND	0.200		ND	0.754		U	
591-78-6	2-Hexanone	ND	0.200	7-	ND	0.820		U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200	-	ND	1.54		u 🎶	
127-18-4	Tetrachloroethene	6.28	0.200		42.6	1.36			
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		u <i>U</i>	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07		U	
100-42-5	Styrene	ND	0.200		ND	0.852		U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U ,	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U J	
		, page							

Client **Project Name** : P. W. Grosser

: COMPUTER CIRCUITS

Lab Number : L1746905 Project Number : MAR1701

Lab ID

: L1746905-02

: 12/19/17 10:15

Client ID Sample Location

: SVE-NORTH : 145 MARCUS BLVD, HAUPPAUG : 12/20/17

Sample Matrix

: 12/28/17 02:14

Analytical Method: 48,TO-15

: SOIL_VAPOR

Dilution Factor : 1

Lab File ID Sample Amount : R156377 : 250 ml

Analyst : RY Instrument ID : AIRPIANO1

GC Column

Date Collected

Date Received

Date Analyzed

: RTX-1

	Parameter	ppbV				ug/m3			
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		u <i>U</i> 5	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		V	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20	**	U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13	**	U 🗸	

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-03

Client ID

: IA-4

Sample Location

: 145 MARCUS BLVD, HAUPPAUG

Sample Matrix Analytical Method : 48,TO-15 Lab File ID

: AIR

Sample Amount

: R156370 : 250 ml

Lab Number **Project Number**

: L1746905 : MAR1701

Date Collected

: 12/19/17 16:10

Date Received

: 12/20/17

Date Analyzed Dilution Factor

: 12/27/17 22:26 : 1

Analyst

: RY

Instrument ID

: AIRPIANO1

GC Column : RTX-1

		ppbV				ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
								•
75-71-8	Dichlorodifluoromethane	0.398	0.200		1.97	0.989		:
74-87-3	Chloromethane	0.575	0.200		1.19	0.413		
76-14-2	Freon-114	ND	0.200	••	ND	1.40	==	υγ
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528		U V
64-17-5	Ethanol	33.5	5.00		63.1	9.42		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		u <i>U</i>
67-64-1	Acetone	9.72	1.00		23.1	2.38		
75-69-4	Trichlorofluoromethane	0.390	0.200		2.19	1.12	-	
67-63-0	Isopropanol	54.4	0.500		134	1.23		
75-65-0	Tertiary butyl Alcohol	0.566	0.500		1.72	1.52		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		υ <i>Ŭ</i>
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		. U (
75-15-0	Carbon disulfide	ND	0.200		ND	0.623	••	U
76-13-1	Freon-113	ND	0.200		ND	1.53		U .
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793	-	U
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809	## ##	U
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		U
78-93-3	2-Butanone	ND	0.500		ND	1.47	**	U
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80		U
67-66-3	Chloroform	ND	0.200		ND	0.977		U
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U
110-54-3	n-Hexane	ND	0.200		, ND	0.705	= =	U V
71-43-2	Benzene	0.309	0.200		0.987	0.639		
110-82-7	Cyclohexane	ND	0.200		ND	0.688		υV
78-87-5	1,2-Dichloropropane	, ND	0.200		ND	0.924		u (/

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-03

Client ID Sample Location : IA-4

Sample Matrix

: 145 MARCUS BLVD, HAUPPAUG

Analytical Method : 48,TO-15

: AIR

Lab File ID

: R156370

Sample Amount

: 250 ml

Lab Number

: L1746905

Project Number Date Collected

: MAR1701

Date Received

: 12/19/17 16:10 : 12/20/17

Date Analyzed

: 12/27/17 22:26

Dilution Factor

: 1

Analyst

: RY

Instrument ID

: AIRPIANO1

GC Column

: RTX-1

		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		u U	
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U J	**************************************
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U	
142-82-5	Heptane	0.335	0.200		1.37	0.820			
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		u <i>U</i>	
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		u [***************************************
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		u J	
108-88-3	Toluene	0.546	0.200		2.06	0.754			***************************************
591-78-6	2-Hexanone	ND	0.200		ND	0.820		u (
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U ſ	***************************************
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U	***************************************
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U	
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	*** <u>**********************************</u>
75-25-2	Bromoform	ND	0.200		ND	2.07		U	·
100-42-5	Styrene	ND	0.200		ND	0.852		U ·	***************************************
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		υ	~
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U	***************************************
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U	***************************************
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		u 05	
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		u ()	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20	••	U	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U	
95-50-1	1,2-Dichlorobenzene	NĐ	0.200		ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200	==	ND	1.48		U	***************************************
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U	**************************************

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID **Client ID** : L1746905-04

Sample Location

: IA-2 : 145 MARCUS BLVD, HAUPPAUG

Sample Matrix Analytical Method : 48,TO-15

: AIR

Lab File ID

: R156371

Sample Amount

: 250 ml

Lab Number **Project Number** : L1746905 : MAR1701

Date Collected

: 12/19/17 16:16

Date Received

: 12/20/17

Date Analyzed Dilution Factor : 12/27/17 22:59

Analyst

: 1 : RY

Instrument ID

: AIRPIANO1

GC Column

: RTX-1

		ppbV				ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75 74 0	Dishian difference the sec	0.047			4.70			
75-71-8	Dichlorodifluoromethane	0.347	0.200		1.72	0.989		
74-87-3	Chloromethane	0.619	0.200		1.28	0.413		
76-14-2	Freon-114	ND	0.200		ND	1.40		u y
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U
74-83-9	Bromomethane	ND	0.200		ND	0.777		U
75-00-3	Chloroethane	ND	0.200		ND	0.528		U V
64-17-5	Ethanol	139	5.00		262	9.42		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874	==	u V
67-64-1	Acetone	13.2	1.00		31.4	2.38		
75-69-4	Trichlorofluoromethane	0.577	0.200	••	3.24	1.12		
67-63-0	Isopropanol	96.7	0.500		238	1.23		
75-65-0	Tertiary butyl Alcohol	0.707	0.500		2.14	1.52		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		u U
107-05-1	3-Chloropropene	ND	0.200		ND	0.626		U
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U
76-13-1	Freon-113	ND	0.200		ND	1.53		U
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U
1634-04-4	Methyl tert butyl ether	ND.	0.200		ND	0.721		U V
78-93-3	2-Butanone	0.515	0.500		1.52	1.47	-	
141-78-6	Ethyl Acetate	ND	0.500	•••	ND	1.80	••	u <i>Q</i>
67-66-3	Chloroform	ND	0.200		ND	0.977		U
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U
110-54-3	n-Hexane	ND	0.200	••	ND	0.705		u V
71-43-2	Benzene	0.304	0.200		0.971	0.639		
110-82-7	Cyclohexane	ND	0.200		ND	0.688		u (<i>1</i>
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		u ()

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-04

Client ID

: IA-2

Sample Location Sample Matrix

: 145 MARCUS BLVD, HAUPPAUG

Analytical Method: 48,TO-15

: AIR

Lab File ID Sample Amount

: R156371 : 250 ml

Lab Number

: L1746905

Project Number Date Collected

: MAR1701 : 12/19/17 16:16

Date Received

: 12/20/17

Date Analyzed

: 12/27/17 22:59

Dilution Factor

: 1

Analyst

: RY

Instrument ID GC Column

: AIRPIANO1 : RTX-1

Jampie Amount . 250 mi		•			GC Column		. 117	N-1
			ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		υ <i>Ο</i>
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U \
142-82-5	Heptane	0.333	0.200		1.36	0.820		
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		u U
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908	***	U
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		u V
108-88-3	Toluene	0.463	0.200		1.74	0.754		
591-78-6	2-Hexanone	ND	0.200	4 .5	ND	0.820		u Ç
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U
06-93-4	1,2-Dibromoethane	. ND	0.200		ND	1.54	==	U
08-90-7	Chlorobenzene	. ND	0.200		ND	0.921		U
00-41-4	Ethylbenzene	ND	0.200		ND	0.869		U
79601-23-1	p/m-Xylene	ND	0.400		ND	1.74	••	U
75-25-2	Bromoform	ND	0.200		ND	2.07		U
100-42-5	Styrene	ND	0.200		ND	0.852		U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200	••	ND	1.37		U
5-47-6	o-Xylene	ND	0.200		ND	0.869		U
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U
08-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		u V
5-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		u <i>U</i> 55
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U \checkmark
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U
06-46-7	1,4-Dichlorobenzene	ND	0.200	45	ND	1.20		Ü
5-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		Ų
20-82-1	1,2,4-Trichlorobenzene	ND	0.200	-	ND	1.48		U ,
7-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-05

Client ID Sample Location

: IA-8 : 145 MARCUS BLVD, HAUPPAUG

Sample Matrix Analytical Method: 48,TO-15

: AIR

Lab File ID

: R156372

Sample Amount

: 250 ml

Lab Number **Project Number**

: L1746905 : MAR1701

Date Collected

: 12/19/17 16:18

Date Received Date Analyzed

: 12/20/17 : 12/27/17 23:31

Dilution Factor

Analyst

: 1

Instrument ID

: RY : AIRPIANO1

GC Column

: RTX-1

			ppbV		ug/m3					
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
	5.1.1. 110									
75-71-8	Dichlorodifluoromethane	0.356	0.200		1.76	0.989		<u> </u>		
74-87-3	Chloromethane	0.667	0.200		1.38	0.413				
76-14-2	Freon-114	ND	0.200		ND	1.40		u <i>U</i>		
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U		
74-83-9	Bromomethane	ND	0.200		ND	0.777		U		
75-00-3	Chloroethane	· ND	0.200		ND	0.528		u V		
64-17-5	Ethanol	256	5.00		482	9.42				
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U U		
67-64-1	Acetone	11.7	1.00		27.8	2.38				
75-69-4	Trichlorofluoromethane	0.303	0.200		1.70	1.12				
67-63-0	Isopropanol	10.9	0.500		26.8	1.23				
75-65-0	Tertiary butyl Alcohol	0.538	0.500		1.63	1.52				
75-09-2	Methylene chloride	ND	0.500		ND	1.74		u V		
107-05-1	3-Chloropropene	ND	0.200		ND	0.626	•	U		
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U		
76-13-1	Freon-113	ND	0.200		ND	1.53	==	U		
156-60-5	trans-1,2-Dichloroethene	ND	0.200	-	ND	0.793		U		
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U		
1634-04-4	Methyl tert butyl ether	ND	0.200	10 M	ND	0.721	**	u V		
78-93-3	2-Butanone	0.529	0.500		1.56	1.47	==			
141-78-6	Ethyl Acetate	0.801	0.500		2.89	1.80				
67-66-3	Chloroform	ND	0.200	7.7	ND	0.977		u <i>(</i>		
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U		
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		υ		
110-54-3	n-Hexane	ND	0.200		ND	0.705		U		
1-43-2	Benzene	0.294	0.200	•••	0.939	0.639				
110-82-7	Cyclohexane	ND	0.200		ND	0.688		u \mathcal{J}		
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		υ (/		

: P. W. Grosser Client

Project Name : COMPUTER CIRCUITS

Lab ID : L1746905-05

Client ID : IA-8

Sample Location : 145 MARCUS BLVD, HAUPPAUG

: AIR Sample Matrix Analytical Method: 48,TO-15 Lab File ID : R156372 : 250 ml Sample Amount

Dilution Factor : 1 Analyst Instrument ID

Lab Number

Date Collected

Date Received

Date Analyzed

: RY : AIRPIANO1

: L1746905

: 12/20/17

: 12/19/17 16:18

: 12/27/17 23:31

GC Column : RTX-1

Project Number : MAR1701

		ppbV				ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
								_		
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		υŲ		
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U		
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U		
142-82-5	Heptane	ND	0.200		ND	0.820		U		
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		υ		
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U		
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U		
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U 🗸		
108-88-3	Toluene	0.456	0.200		1.72	0.754				
591-78-6	2-Hexanone	ND	0.200		ND	0.820		U U		
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70	a =	U		
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U		
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U		
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U		
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U		
75-25-2	Bromoform	ND	0.200		ND	2.07		U		
100-42-5	Styrene	ND	0.200		ND	0.852		U		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U		
95-47-6	o-Xylene	ND	0.200		ND	0.869		U .		
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U		
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983	7.0	u V		
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		u 05		
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		u V		
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U		
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U		
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND	1.20		U		
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U ,		
87-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		U		
								T		

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-06

Client ID

: IA-3

Sample Location

: 145 MARCUS BLVD, HAUPPAUG

Sample Matrix Analytical Method: 48,TO-15

: AIR

Lab File ID

: R156374

Sample Amount

: 250 ml

Lab Number **Project Number**

: L1746905 : MAR1701

Date Collected

: 12/19/17 16:19

Date Received

: 12/20/17

Date Analyzed

: 12/28/17 00:36

Dilution Factor

Analyst

: 1

Instrument ID

: RY : AIRPIANO1

GC Column

: RTX-1

Sain	pie Amount . 250 mi				GC C	Jiumi	: n12	^- I	
		ppbV				ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.328	0.200		1.62	0.989			
74-87-3	Chloromethane	0.666	0.200		1.38	0.413			
76-14-2	Freon-114	ND	0.200		ND	1.40	**	ùυ	
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U	
74-83-9	Bromomethane	ND	0.200		ND	0.777		U	
75-00-3	Chloroethane	ND	0.200		ND	0.528		U	
64-17-5	Ethanol	254	5.00		479	9.42			
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U 🗸	
67-64-1	Acetone	11.9	1.00		28.3	2.38			
75-69-4	Trichlorofluoromethane	0.272	0.200		1.53	1.12			
67-63-0	Isopropanol	10.6	0.500		26.1	1.23			
75 - 65-0	Tertiary butyl Alcohol	ND	0.500		ND	1.52		υO	
75-09-2	Methylene chloride	ND	0.500		ND	1.74		U	
107-05-1	3-Chloropropene	ND	0.200		ND	0.626	==	U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U	
76-13-1	Freon-113	ND	0.200		ND	1.53	••	U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200	-	ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721	40	U V	
78-93-3	2-Butanone	0.585	0.500		1.73	1.47			
141-78-6	Ethyl Acetate	0.737	0.500		2.66	1.80			
67-66-3	Chloroform	ND	0.200		ND	0.977		υÝ	
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U	
107-06-2	1,2-Dichloroethane	ND	0.200	•	ND	0.809		U	
110-54-3	n-Hexane	. ND	0.200		ND	0.705		U V	
71-43-2	Benzene	0.284	0.200	••	0.907	0.639			
110-82-7	Cyclohexane	ND	0.200		ND	0.688		u (/	
78-87-5	1,2-Dichloropropane	ND	0.200	-	ND	0.924		u (/	
								~	

FEB 2 8 2018

Page 65 of 799

Initials: EX

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-06

Client ID

: IA-3

Sample Location

: 145 MARCUS BLVD, HAUPPAUG

Sample Matrix Analytical Method: 48,TO-15

: AIR

Lab File ID

: R156374

Sample Amount

: 250 ml

Lab Number

: L1746905 : MAR1701

Project Number Date Collected

: 12/19/17 16:19

Date Received

: 12/20/17

Date Analyzed Dilution Factor

: 12/28/17 00:36

Analyst

: 1 : RY

Instrument ID

: AIRPIANO1

GC Column : RTX-1 ug/m3

Oamp	AC AIRCUIT . 200 IIII				GC C	Jiulill	. 1317	·- I
			ppbV			ug/m3	•	
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		u <i>Q</i>
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934		U V
142-82-5	Heptane	0.203	0.200		0.832	0.820		
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U 1 <i>)</i>
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U V
108-88-3	Toluene	0.637	0.200		2.40	0.754		
591-78-6	2-Hexanone	ND	0.200	==	ND	0.820		u U
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		u Ţ
106-93-4	1,2-Dibromoethane	ND .	0.200		ND	1.54		U
108-90-7	Chlorobenzene	ND	0.200		ND	0.921		U
100-41-4	Ethylbenzene	ND	0.200	•=	ND	0.869		U
179601-23-1	p/m-Xylene	ND	0.400	•=	ND	1.74		U
75-25-2	Bromoform	ND	0.200		ND	2.07		U
100-42-5	Styrene	ND	0.200		ND	0.852		U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U
95-47-6	o-Xylene	ND	0.200		ND	0.869		U
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U
108-67-8	1,3,5-Trimethylbenzene	ND	0.200		ND	0.983		U
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		u U5
100-44-7	Benzyl chloride	ND	0.200		ND	1.04	*	υŲ
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U
06-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20		U
5-50-1	1,2-Dichlorobenzene	· ND	0.200		ND	1,20	•	U
20-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U /
7-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13	••	u V
								······································

FEB 2 8 2018

nnh\/

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-07

Client ID

: IA-5

Sample Location : 145 MARCUS BLVD, HAUPPAUG

Sample Matrix Analytical Method: 48,TO-15

: AIR

Lab File ID

: R156375

Sample Amount

: 250 ml

Lab Number Project Number : MAR1701

: L1746905

Date Collected

: 12/19/17 16:22

Date Received

: 12/20/17

Date Analyzed

: 12/28/17 01:09

Dilution Factor

: 1

Analyst Instrument ID : RY

GC Column

: AIRPIANO1

: RTX-1

			ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-71-8	Dichlorodifluoromethane	0.584	0.200		2.89	0.989		
74-87-3	Chloromethane	0.800	0.200		1.65	0.413		
76-14-2	Freon-114	ND	0.200		ND	1.40		u V
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442		U
74-83-9	Bromomethane	· ND	0.200		ND	0.777		U .
75-00-3	Chloroethane	ND	0.200		ND	0.528		u V
64-17-5	Ethanol	140	5.00		264	9.42		
593-60-2	Vinyl bromide	ND	0.200		ND	0.874		U (/
67-64-1	Acetone	9.75	1.00		23.2	2.38		
75-69-4	Trichlorofluoromethane	0.265	0.200		1.49	1.12		
67-63-0	Isopropanol	11.1	0.500		27.3	1.23		
75-65-0	Tertiary butyl Alcohol	0.514	0.500		1.56	1.52		
75-09-2	Methylene chloride	ND	0.500		ND	1.74		u V
107-05-1	3-Chloropropene	· ND	0.200		ND	0.626		U
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U
76-13-1	Freon-113	ND	0.200	44	ND	1.53	••	U
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793		U.
75-34-3	1,1-Dichloroethane	ND	0.200		ND	0.809		U
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721		u V
78-93-3	2-Butanone	0.603	0.500		1.78	1.47		
141-78-6	Ethyl Acetate	0.572	0.500		2.06	1.80		
67-66-3	Chloroform	ND	0.200		ND	0.977		U V
109-99-9	Tetrahydrofuran	ND	0.500		ND	1.47		U
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U
110-54-3	n-Hexane	0.234	0.200	•	0.825	0.705		
71-43-2	Benzene	0.314	0.200		1.00	0.639	==	
110-82-7	Cyclohexane	ND	0.200		ND ·	0.688		υ <i>(</i> /
78-87-5	1,2-Dichloropropane	ND	0.200	,- .	ND	0.924		U (/

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-07

Client ID

: IA-5

Sample Location : 145 MARCUS BLVD, HAUPPAUG

Sample Matrix Analytical Method: 48,TO-15

: AIR

Lab File ID

: R156375

Sample Amount

: 250 ml

Lab Number Project Number

: L1746905 : MAR1701

Date Collected

: 12/19/17 16:22

Date Received

: 12/20/17

Date Analyzed

: 12/28/17 01:09

Dilution Factor

: 1

Analyst Instrument ID : RY : AIRPIANO1

GC Column

: RTX-1

Samp	de Amount . 230 mi				GC C	olullill	: 11/	N-1
			ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-27-4	Bromodichloromethane	ND	0.200		ND	1.34		u <i>O</i>
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		u $oldsymbol{arphi}$
540-84-1	2,2,4-Trimethylpentane	0.213	0.200		0.995	0.934		
142-82-5	Heptane	0.255	0.200		1.05	0.820		
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		υÇ
108-10-1	4-Methyl-2-pentanone	ND	0.500		ND	2.05		U
10061-02-6	trans-1,3-Dichloropropene	ND	0.200		ND	0.908		U
79-00-5	1,1,2-Trichloroethane	ND	0.200	••	ND	1.09		u V
108-88-3	Toluene	0.516	0.200		1.94	0.754		
591-78-6	2-Hexanone	ND	0.200		ND	0.820		u <i>(</i> /
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U /
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54		U
108-90-7	Chlorobenzene	ND	0.200	,	ND	0.921		U
100-41-4	Ethylbenzene	ND	0.200		ND	0.869		U
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		Ü
75-25-2	Bromoform	ND	0.200		ND	2.07		, U
100-42-5	Styrene	ND	0.200		ND	0.852		U
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37		U
95-47-6	o-Xylene	ND	0.200		ND	0.869		U
622-96-8	4-Ethyltoluene	ND	0.200		ND	0.983		U
108-67 - 8	1,3,5-Trimethylbenzene	ND ·	0.200		ND	0.983		u \bigvee
95-63-6	1,2,4-Trimethylbenzene	ND	0.200		ND	0.983		U U5
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U (/
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20		U
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND ·	1.20		U
95-50-1	1,2-Dichlorobenzene	ND	0.200		ND ·	1.20		U
120-82-1	1,2,4-Trichlorobenzene	NĎ	0.200		ND	1.48		U
37-68-3	Hexachlorobutadiene	ND	0.200		ND	2.13		u 🎶

FEB 2 8 2018

: P. W. Grosser Client

Project Name : COMPUTER CIRCUITS

Lab ID

: L1746905-03 : IA-4

Client ID

Sample Location : 145 MARCUS BLVD, HAUPPAUG

Sample Matrix

: AIR

Analytical Method : 48,TO-15-SIM Lab File ID Sample Amount

: R156370 : 250 ml

Lab Number

: L1746905

Project Number : MAR1701 Date Collected

: 12/19/17 16:10

Date Received

: 12/20/17

Date Analyzed

: 12/27/17 22:26

Dilution Factor Analyst

: 1 : RY

Instrument ID

: AIRPIANO1

GC Column

: RTX-1

	Parameter	ppbV				ug/m3			
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		u O	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109	==	U V	***************************************
56-23-5	Carbon tetrachloride	0.091	0.020		0.572	0.126	==	-	
79-01-6	Trichloroethene	0.059	0.020		0.317	0.107			
127-18-4	Tetrachloroethene	0.061	0.020		0.414	0.136			

FEB 2 8 2018

Initials: EX

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-04

Client ID

: IA-2

Sample Location : 145 MARCUS BLVD, HAUPPAUG

Sample Matrix

: AIR

Lab File ID

Analytical Method: 48,TO-15-SIM

Sample Amount

: R156371 : 250 ml

Lab Number Project Number : MAR1701

: L1746905

Date Collected

: 12/19/17 16:16

Date Received

: 12/20/17

Date Analyzed

: 12/27/17 22:59

Dilution Factor

: 1

Analyst

: RY

Instrument ID GC Column

: AIRPIANO1

: RTX-1

	•		ppbV			ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		u <i>U</i>
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079	-	U
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079	## pip	U 🇸
71-55-6	1,1,1-Trichloroethane	0.020	0.020		0.109	0.109		
56-23-5	Carbon tetrachloride	0.086	0.020		0.541	0.126		
79-01-6	Trichloroethene	0.065	0.020		0.349	0.107		
127-18-4	Tetrachloroethene	0.077	0.020		0.522	0.136	==	

FEB 2 8 2018

Initials: 02

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-05

Client ID

: IA-8

Sample Location

: 145 MARCUS BLVD, HAUPPAUG

Sample Matrix

: AIR Analytical Method : 48,TO-15-SIM

Lab File ID Sample Amount : R156372 : 250 ml

Lab Number Project Number : MAR1701

: L1746905

Date Collected

: 12/19/17 16:18

Date Received

: 12/20/17

Date Analyzed

Dilution Factor

: 12/27/17 23:31

Analyst

: 1 : RY

Instrument ID

: AIRPIANO1

GC Column

: RTX-1

			ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	***************************************	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		u <i>Q</i>		
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U ·		
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U	***************************************	
71-55-6	1,1,1-Trichloroethane	ND	0.020	- d	ND	0.109		U V		
56-23-5	Carbon tetrachloride	0.092	0.020		0.579	0.126				
79-01-6	Trichloroethene	0.148	0.020		0.795	0.107				
127-18-4	Tetrachloroethene	0.084	0.020		0.570	0.136			***************************************	
·					***************************************					

FEB 2 8 2018

Initials: CZ

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-06

Client ID

: IA-3

Sample Location Sample Matrix

: 145 MARCUS BLVD, HAUPPAUG

: AIR

Analytical Method: 48,TO-15-SIM

Lab File ID Sample Amount : R156374

: 250 ml

Lab Number **Project Number**

: L1746905 : MAR1701

Date Collected

: 12/19/17 16:19

Date Received

: 12/20/17

Date Analyzed

: 12/28/17 00:36

Dilution Factor

: 1

Analyst

: RY

Instrument ID

: AIRPIANO1

GC Column : RTX-1

	ppbV				ug/m3		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
Vinyl chloride	ND	0.020		ND	0.051		u <i>Q</i>
1,1-Dichloroethene	ND	0.020		ND	0.079		U.
cis-1,2-Dichloroethene	ND	0.020		ND	0.079		U ,
1,1,1-Trichloroethane	ND	0.020		ND	0.109		u V
Carbon tetrachloride	0.090	0.020		0.566	0.126		
Trichloroethene	0.142	0.020		0.763	0.107		
Tetrachloroethene	0.086	0.020		0.583	0.136		
	Vinyl chloride 1,1-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Trichloroethane Carbon tetrachloride Trichloroethene	Vinyl chloride ND 1,1-Dichloroethene ND cis-1,2-Dichloroethene ND 1,1,1-Trichloroethane ND Carbon tetrachloride 0.090 Trichloroethene 0.142	ParameterResultsRLVinyl chlorideND0.0201,1-DichloroetheneND0.020cis-1,2-DichloroetheneND0.0201,1,1-TrichloroethaneND0.020Carbon tetrachloride0.0900.020Trichloroethene0.1420.020	Parameter Results RL MDL Vinyl chloride ND 0.020 1,1-Dichloroethene ND 0.020 cis-1,2-Dichloroethene ND 0.020 1,1,1-Trichloroethane ND 0.020 Carbon tetrachloride 0.090 0.020 Trichloroethene 0.142 0.020	Parameter Results RL MDL Results Vinyl chloride ND 0.020 ND 1,1-Dichloroethene ND 0.020 ND cis-1,2-Dichloroethene ND 0.020 ND 1,1,1-Trichloroethane ND 0.020 ND Carbon tetrachloride 0.090 0.020 0.566 Trichloroethene 0.142 0.020 0.763	Parameter Results RL MDL Results RL Vinyl chloride ND 0.020 ND 0.051 1,1-Dichloroethene ND 0.020 ND 0.079 cis-1,2-Dichloroethene ND 0.020 ND 0.079 1,1,1-Trichloroethane ND 0.020 ND 0.109 Carbon tetrachloride 0.090 0.020 0.566 0.126 Trichloroethene 0.142 0.020 0.763 0.107	Parameter Results RL MDL Results RL MDL Vinyl chloride ND 0.020 ND 0.051 1,1-Dichloroethene ND 0.020 ND 0.079 cis-1,2-Dichloroethene ND 0.020 ND 0.079 1,1,1-Trichloroethane ND 0.020 ND 0.109 Carbon tetrachloride 0.090 0.020 0.566 0.126 Trichloroethene 0.142 0.020 0.763 0.107

FEB 2 8 2018

Initials: ER

Client

: P. W. Grosser

Project Name

: COMPUTER CIRCUITS

Lab ID

: L1746905-07

Client ID

: IA-5

Sample Location

: 145 MARCUS BLVD, HAUPPAUG

Sample Matrix

: AIR

Analytical Method : 48,TO-15-SIM

Lab File ID Sample Amount : R156375 : 250 ml

Lab Number

: L1746905

Project Number

: MAR1701 : 12/19/17 16:22

Date Collected Date Received

: 12/20/17

Date Analyzed

Dilution Factor

: 12/28/17 01:09 : 1

Analyst

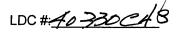
: RY

Instrument ID

: AIRPIANO1

GC Column

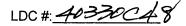
: RTX-1


			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020		ND	0.051		u <i>Ų</i>	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079		U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020	••	ND	0.079		U	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109		u 🎝	
56-23-5	Carbon tetrachloride	0.090	0.020		0.566	0.126			
79-01-6	Trichloroethene	0.077	0.020	••	0.414	0.107			
127-18-4	Tetrachloroethene	0.094	0.020	•	0.637	0.136			
127-18-4	Tetrachloroethene	0.094	0.020		0.637	0.136		Marra, 101 18 Address 11 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	

FEB 2 8 2018

Initials: ピだ

LDC#	LDC #: 40330C48a VALIDATION COMPLETENESS WORKSHEET Date: 2/9/1										
	t: <u>L1746905</u> atory: Alpha Analytical, Inc	Ca	itegory B			Page: /ot / Reviewer:					
	2nd Reviewer:										
METH	OD: GC/MS Volatiles (EPA Method TO-	15)									
	amples listed below were reviewed for ead ion findings worksheets.	ch of the fo	ollowing validation	n areas. Validat	on findings are	e noted in attached					
	Validation Area			Comr	nents						
1.	Sample receipt/Technical holding times	A									
II.	GC/MS Instrument performance check	7									
111.	Initial calibration/ICV	AA	RSOS	<i>३०ी०</i> .	19/53	300 o					
IV.	Continuing calibration	m.	cels	30/0							
V.	Laboratory Blanks/Canister Blanks	-AA	bx-batc	sh_							
VI.	Field blanks	M			· · ·						
VII.	Surrogate spikes	N,									
VIII.	Matrix spike/Matrix spike duplicates	N/W/									
IX.	Laboratory control samples	A	10>								
X.	Field duplicates	N		,							
XI.	Internal standards	\Rightarrow									
XII.	Compound quantitation RL/LOQ/LODs	A									
XIII.	Target compound identification	A									
XIV.	System performance	A									
XV.	Overall assessment of data	A				· · · · · · · · · · · · · · · · · · ·					
Note:			T) = Duplicate B = Trip blank B = Equipment bla	OTHER	urce blank					
	Client ID		La	b ID	Matrix	Date					
1 S	SVE-SOUTH		L1	746905-01	Air	12/19/17					
2 S	SVE-NORTH		L1	746905-02	Air	12/19/17					
3 / 1/	4-4		L1	746905-03	Air	12/19/17					
4 / 1/	4- 2		L1	746905-04	Air	12/19/17					
5 /1/	4-8		L1	746905-05	Air	12/19/17					
6 / 1/	4-3		L1	746905-06	Air	12/19/17					
7 / 1/	4-5		L1	746905-07	Air	12/19/17					
8 14	4-8DUP		L1	746905-05DUP	Air	12/19/17					
9											
Notes:											



VALIDATION FINDINGS CHECKLIST

Page: / of A Reviewer: 2nd Reviewer:

Method: Volatiles (EPA Method TO-15)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times			1	1 manga outlinents
Were all technical holding times met?				
Was canister pressure criteria met?				
II. GC/MS Instrument performance check	# 4 7			
Were the BFB performance results reviewed and found to be within the specified criteria?		•		
Were all samples analyzed within the 24 hour clock criteria?				
Illa, Initial calibration			ele 1	
Did the laboratory perform a 5 point calibration prior to sample analysis?		`		
Were all percent relative standard deviations (%RSD) ≤ 30%?		•	auditar sa rosino	
IIIb. Initial calibration verificattion	32 N			
Was an initial calibration verification standard analyzed after every ICAL for each instrument?				
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 24 hours for each instrument?		-		
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
V. Laboratory Blanks/Canister Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 24 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
Was a canister blank analyzed for every canister?				
Was there contamination in the canister blanks? If yes, please see the Canister Blanks validation completeness worksheet.				
VI. Field Blanks	in the	1		
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VII. Surrogate spikes (Optional)	e de la companya de l	er en er	an e	
Were all surrogate percent recoveries (%R) within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				,
VIII, Laboratory Duplicate		e de la companya de l		
Was a laboratory duplicate analyzed for this SDG?				
Were the relative percent differences (RPD) within the QC limits?				

VALIDATION FINDINGS CHECKLIST

Page: of 2
Reviewer: 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
IX. Laboratory control samples			in garage	
Was an LCS analyzed for this SDG?	7			
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?		/		
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within <u>+</u> 40% from the associated calibration standard?				
Were retention times within \pm 20.0 seconds from the associated calibration standard?				
XII. Compound quantitation		i.		
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?	/	_		
Were compound quantitation and RLs adjusted to reflect all sample dilutions applicable to level IV validation?				
XIII. Target compound identification	4	<u>سر</u>		
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV, System performance	1			
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	لـــا			

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA Method TO-15)

A. Chloromethane	U. 1,1,2-Trichloroethane	00.000	T	
A. Chlorometrane	O. 1,1,2-11ICHIOIOEthane	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. Isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chlorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	ଦ୍ରଦ୍ର ପ୍ତ.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	ssss.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	TTTT.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	υυυυ.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	vvv.

VALIDATION FINDINGS WORKSHEET Continuing Calibration

Page: <u> </u>
Reviewer:
2nd Reviewer:

METHOD: GC/MS VOA (EPA Method TO-15)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Was a continuing calibration standard analyzed at least once every 24 hours for each instrument?

Y N N/A

Were all percent differences (%D) ≤ 30%?

#	Date	ere all percent differences (%D)		Finding %D (Limit: <u>≤</u> 30.0%)	Associated Commission	O all tract
#	Date	Standard ID	Compound		Associated Samples	Qualifications
	17/5/1	R156356	HK	<i>30.</i>	4011 (NO)	VONF
		· · · · · · · · · · · · · · · · · · ·				
					<u> </u>	
					` .	
						<u>L</u>

LDC #: 40-33024 89

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page:___of/_ Reviewer:_____ 2nd Reviewer:_____

METHOD: GC/MS VOA (EPA Method TO-15)

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?

N N/A Were a MS/MSD analyzed for every 20 samples?

Y N N/A Were a MS/MSD percent recoveries (%R) and the relative percent differences (RPD) within the QC limits?

#	Date	MS/MSD ID	Compound	MS %R (Limits)	MSD %R (Limits)		RPD (Limits)	Associated Samples	Qualifications
		රි	M	()	()	36 (5.25)	5 (dets)	dets/b
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	(_,	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
		•	_	()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
	·			()	(()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()	, , , , , , , , , , , , , , , , , , , ,	
				()	()	()		
				()	()	()		

LDC #: 40330C48a

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	of/_
Reviewer:	<u> </u>
2nd Reviewer:	

METHOD: GC/MS VOA (EPA Method TO-15)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$

average RRF = sum of the RRFs/number of standards

%RSD = 100 * (S/X)

 A_x = Area of compound,

 $C_x = Concentration of compound,$

S = Standard deviation of the RRFs

X = Mean of the RRFs

A_{is} = Area of associated internal standard

C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date		(Reference Internal tandard)	RRF (10 std)	RRF (10 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	10/26/17	Acetone	(1st internal standard)	0.642	0.642	0.7060	0.7060	24.52	24.53
			Benzene	(2nd internal standard)	1.045	1.045	1.0357	1.0357	9.03	9.03
			Ethylbenzene	(3rd internal standard)	7 428	7 428	7 1751	7 1751	9 44	9.44
2			Acetone	(1st internal standard)						
			Benzene	(2nd internal standard)						
			Fthylhenzene	(3rd internal standard)						
3			Acetone	(1st internal standard)			,			
			Benzene	(2nd internal standard)						
<u></u>			Fthylbenzene	(3rd internal standard)						
4			Acetone ,	(1st internal standard)						
			Benzene	(2nd internal standard)						
			Ethylbenzene	(3rd internal standard)						

results.	Comments:	Refer to Initial C	alibration findings	worksheet for I	<u>ist of qualificat</u>	ions and asso	ciated samples	s when reported	<u>l results do not</u>	agree within	<u>10.0% of the</u>	<u>recalculated</u>
	results.											·

LDC #: 40330C48a

VALIDATION FINDINGS WORKSHEET <u>Continuing Calibration Results Verification</u>

Page:	_of/_
Reviewer:	
2nd Reviewer:	

METHOD: GC/MS VOA (EPA TO-15)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ RRF = continuing calibration RRF

 A_x = Area of compound, A_{is} = Area of associated internal standard

 C_x = Concentration of compound, C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	R156356	12/27/17	Acetone (1st internal standa	rd) 0.7060	0.756	0.756	7.1	7.0
			Benzene (2nd internal standa	rd) 1.0357	0.957	0.957	7.6	7.6
			Ethylbenzene (3rd internal standa	rd) 7 1751	7.121	7 121	0.8	0.8
2			Acetone (1st internal standa	rd)				
			Benzene (2nd internal standa	rd)				
			Ethylhenzene (3rd internal standa	rd)				
3	·		Acetone (1st internal standa	rd)				
			Benzene (2nd internal standa	rd)				
			Ethylbenzene (3rd internal standa	rd)				
4			Acetone , (1st internal standa	rd)				
			Benzene (2nd internal standa					
			Ethylbenzene (3rd internal standa					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

40330C48a CONCLC.wpd

LDC #: 40330048a

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:	
Reviewer:	9
2nd reviewer:_	0
·	77

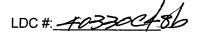
4METHOD:	GC/MS	VOA (EPA M	lethod	TO-15)
----------	-------	-------	-------	--------	--------

YN N/A Were all reported results recalculated and verified for all level IV samples?

Y/ N N/A Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example: Concentration = (A,)(I,)(DF) $(A_k)(RRF)(V_o)(%S)$ Sample I.D. 3 Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added, in nanograms (ng) = 9.72 ppbV x 58 = 93. Dus/m3 Relative response factor of the calibration standard. RRF Volume or weight of sample pruged in milliliters (ml) or grams (g). Df Dilution factor. %S Percent solids, applicable to soils and solid matrices only.

	mances only.				<u> </u>
#	Sample ID	Compound	Reported Concentration	Concentration (Mym)	Qualification
	3	F	 9.72	23./	
			,		
		·			
	·				


SDG#	t:40330C48bVALIDATIO t:L1746905 atory:_Alpha Analytical, Inc		LETENESS WOR Itegory B	KSHEET	Date Page: Reviewer: 2nd Reviewer:	/of /
The sa	OD: GC/MS Volatiles (EPA Method TO- amples listed below were reviewed for eation findings worksheets.	•	ollowing validation area	s. Validation find	dings are noted in	attached
	Validation Area			Comments		
<u>l.</u>	Sample receipt/Technical holding times	A				
11.	GC/MS Instrument performance check	A				
III.	Initial calibration/ICV	AA	R50 & 38		N= 30/0	
IV.	Continuing calibration	\$	ecy = 30	D0		
V.	Laboratory Blanks/Canister Blanks	A/A	-bx batch			
VI.	Field blanks	\ \ \ \ \				
VII.	Surrogate spikes	N,				
VIII.	Matrix spike/Matrix spike duplicates	NA				
IX.	Laboratory control samples	A	105			
X.	Field duplicates	N				
XI.	Internal standards	A				
XII.	Compound quantitation RL/LOQ/LODs	A				
XIII.	Target compound identification	*				
XIV.	System performance	A				
XV.	Overall assessment of data	1				
lote:	N = Not provided/applicable R = Rin	o compounds sate eld blank	TB = Tri		SB=Source blank OTHER:	
	Client ID		Lab ID	Ma	atrix Date	
1	CVE-NORTH		L1746908	5-02 Air	12/19	/17
2 l	A-4		L1746905	5-03 Air	12/19	/17
3 l	A-2		L174690	5-04 Air	12/19	/17
4 L	A-8		L174690	5-05 Air	12/19	/17
5 L	A-3		L1746905	5-06 Air	12/19	/17
6 L	A-5		L1746905	5-07 Air	12/19	/17
7 L	A-8DUP		L1746905	5-05DUP Air	12/19	/17
8						
9						
<u> 10 </u>						
lotes:				II		

LDC#: 40330c48b

VALIDATION FINDINGS CHECKLIST

Method: Volatiles (EPA Method TO-15)

Wethod: Volatiles (EPA Method 10-15)	T		T	i
Validation Area	Yes	No	NA	Findings/Comments
Technical holding times	T /		justi. I	T
Were all technical holding times met?	/			
Was canister pressure criteria met?		and the second		
II. GC/MS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 24 hour clock criteria?				
IIIa. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (%RSD) ≤ 30%?				
IIIb. Initial calibration verificattion				ner Office
Was an initial calibration verification standard analyzed after every ICAL for each instrument?				
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?		005012-W07-2-W0		
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 24 hours for each instrument?				
Were all percent differences (%D) ≤ 30% or percent recoveries (%R) 70-130%?				
V. Laboratory Blanks/Canister Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 24 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.		/		
Was a canister blank analyzed for every canister?	\triangle			
Was there contamination in the canister blanks? If yes, please see the Canister Blanks validation completeness worksheet.		/		
VI. Field Blanks				
Were field blanks identified in this SDG?	e			
Were target compounds detected in the field blanks?				
VII. Surrogate spikes (Optional)				
Were all surrogate percent recoveries (%R) within QC limits?				
If the percent recovery (%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with %R outside of criteria?				-
VIII Laboratory Duplicate	- 4			
Was a laboratory duplicate analyzed for this SDG?				
Were the relative percent differences (RPD) within the QC limits?				

VALIDATION FINDINGS CHECKLIST

Page: of Page: 2nd Reviewer: 2nd Reviewer:

Validation Area	Yes	No	NA	Findings/Comments
IX Laboratory control samples	181.97			en e
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?	/			
Were the LCS percent recoveries (%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within <u>+</u> 40% from the associated calibration standard?		·		
Were retention times within <u>+</u> 20.0 seconds from the associated calibration standard?				
XII. Compound quantitation				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV. System performance				and the second s
System performance was found to be acceptable.				
XV. Overall assessment of data	/			
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: VOA (EPA Method TO-15)

A. Chloromethane	U. 1,1,2-Trichloroethane	OO. 2,2-Dichloropropane	III	T T T T T T T T T T T T T T T T T T T
A. Onlorometrarie	O. 1,1,2-11Ichloroethalie	OO. 2,2-Dichloropropane	III. n-Butylbenzene	CCCC.1-Chlorohexane
B. Bromomethane	V. Benzene	PP. Bromochloromethane	JJJ. 1,2-Dichlorobenzene	DDDD. Isopropyl alcohol
C. Vinyl choride	W. trans-1,3-Dichloropropene	QQ. 1,1-Dichloropropene	KKK. 1,2,4-Trichlorobenzene	EEEE. Acetonitrile
D. Chloroethane	X. Bromoform	RR. Dibromomethane	LLL. Hexachlorobutadiene	FFFF. Acrolein
E. Methylene chloride	Y. 4-Methyl-2-pentanone	SS. 1,3-Dichloropropane	MMM. Naphthalene	GGGG. Acrylonitrile
F. Acetone	Z. 2-Hexanone	TT. 1,2-Dibromoethane	NNN. 1,2,3-Trichlorobenzene	HHHH. 1,4-Dioxane
G. Carbon disulfide	AA. Tetrachloroethene	UU. 1,1,1,2-Tetrachloroethane	OOO. 1,3,5-Trichlorobenzene	IIII. isobutyl alcohol
H. 1,1-Dichloroethene	BB. 1,1,2,2-Tetrachloroethane	VV. Isopropylbenzene	PPP. trans-1,2-Dichloroethene	JJJJ. Methacrylonitrile
I. 1,1-Dichloroethane	CC. Toluene	WW. Bromobenzene	QQQ. cis-1,2-Dichloroethene	KKKK. Propionitrile
J. 1,2-Dichloroethene, total	DD. Chlorobenzene	XX. 1,2,3-Trichloropropane	RRR. m,p-Xylenes	LLLL. Ethyl ether
K. Chloroform	EE. Ethylbenzene	YY. n-Propylbenzene	SSS. o-Xylene	MMMM. Benzyl chloride
L. 1,2-Dichloroethane	FF. Styrene	ZZ. 2-Chlorotoluene	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	NNNN.
M. 2-Butanone	GG. Xylenes, total	AAA. 1,3,5-Trimethylbenzene	UUU. 1,2-Dichlorotetrafluoroethane	0000.
N. 1,1,1-Trichloroethane	HH. Vinyl acetate	BBB. 4-Chiorotoluene	VVV. 4-Ethyltoluene	PPPP.
O. Carbon tetrachloride	II. 2-Chloroethylvinyl ether	CCC. tert-Butylbenzene	WWW. Ethanol	ର ରୁର.
P. Bromodichloromethane	JJ. Dichlorodifluoromethane	DDD. 1,2,4-Trimethylbenzene	XXX. Di-isopropyl ether	RRRR.
Q. 1,2-Dichloropropane	KK. Trichlorofluoromethane	EEE. sec-Butylbenzene	YYY. tert-Butanol	SSSS.
R. cis-1,3-Dichloropropene	LL. Methyl-tert-butyl ether	FFF. 1,3-Dichlorobenzene	ZZZ. tert-Butyl alcohol	ттт.
S. Trichloroethene	MM. 1,2-Dibromo-3-chloropropane	GGG. p-Isopropyltoluene	AAAA. Ethyl tert-butyl ether	υυυυ.
T. Dibromochloromethane	NN. Methyl ethyl ketone	HHH. 1,4-Dichlorobenzene	BBBB. tert-Amyl methyl ether	vvv.

LDC #: 40330C48b

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_	101
Reviewer:	4
2nd Reviewer:	<u></u>

METHOD: GC/MS VOA (EPA Method TO-15)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (%RSD) were recalculated for the compounds identified below using the following calculations:

 $\mathsf{RRF} = (\mathsf{A}_{\mathsf{x}})(\mathsf{C}_{\mathsf{is}})/(\mathsf{A}_{\mathsf{is}})(\mathsf{C}_{\mathsf{x}})$

darde

 A_x = Area of compound,

A_{is} = Area of associated internal standard

average RRF = sum of the RRFs/number of standards

 $\hat{C_x}$ = Concentration of compound, S = Standard deviation of the RRFs C_{is} = Concentration of internal standard

%RSD = 100 * (S/X)

X = Mean of the RRFs

				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	RRF (1.0 std)	RRF (1.0 std)	Average RRF (initial)	Average RRF (initial)	%RSD	%RSD
1	ICAL	10/26/17	Vinyl chloride (1st internal standard)	0.569	0.569	0.5773	0.5773	7.91	7.91
			Trichloroethene (2nd internal standard)	0.422	0.422	0.4187	0.4187	7.21	7.20
			Tetrachloroethene (3rd internal standard)	2 515	2.515	2 4377	2 4377	5.43	5.42
2			Vinyl chloride (1st internal standard)						
	•		Benzene (2nd internal standard)						
			Tetrachloroethene (3rd internal standard)						
3			Vinyl chloride (1st internal standard)						
			Benzene (2nd internal standard)						
			Tetrachloroethene (3rd internal standard)						
4			Vinyl chloride (1st internal standard)						
			Benzene (2nd internal standard)						
			Tetrachloroethene (3rd internal standard)						

Comments:	Refer to Initial Calibration findings v	vorksheet for list of qualifica	ations and associated sam	nples when reported resul	ts do not agree within	10.0% of the recalculated
results.						

LDC #: 40330C48b

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page:	of
Reviewer:	9
2nd Reviewer:	a

METHOD: GC/MS VOA (EPA TO-15)

The percent difference (%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

% Difference = 100 * (ave. RRF - RRF)/ave. RRF

Where: ave. RRF = initial calibration average RRF

 $RRF = (A_x)(C_{is})/(A_{is})(C_x)$ RRF = continuing calibration RRF

 A_x = Area of compound, A_{is} = Area of associated internal standard

 C_x = Concentration of compound, C_{is} = Concentration of internal standard

					Reported	Recalculated	Reported	Recalculated
#	Standard ID	Calibration Date	Compound (Reference interna Standard)	al Average RRF (initial)	RRF (CC)	RRF (CC)	%D	%D
1	R156357	12/27/17	Vinyl chloride (1st internal stan	dard) 0.5773	0.579	0.579	0.3	0.3
	1	•	Benzene (2nd internal star	ndard) 0.4187	0.416	0.416	0.7	0.6
			Tetrachloroethene (3rd internal star	ndard) 2 4377	2 669	2 669	9.5	9.5
2			Vinyl chloride (1st internal stan	dard)				,
		1	Benzene (2nd internal star	ndard)				
			Tetrachloroethene (3rd internal star	ndard)				
3			Vinyl chloride (1st internal stan	dard)				
			Benzene (2nd internal star	ndard)				
			Tetrachloroethene (3rd internal star	ndard)				
4			Vinyl chloride (1st internal stan	ndard)				
			Benzene (2nd internal star	ndard)				
			Tetrachloroethene (3rd internal star	ndard)				

Comments:	Refer to Continuing	g Calibration findings	worksheet for list of	qualifications and	associated samr	ples when reporte	ed results do not ag	ree within	10.0% of the
recalculated	results.	-							

40330C48b_CONCLC.wpd

LDC #: 403702486

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page:_	(of/
Reviewer:_	9
2nd reviewer:_	· C/
	

METHOD: GC/MS VOA (EPA Method TO-15)

Y N N/A Were all reported results recalculated and verified for all level IV samples?

W N N/A Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Example: $(A_{\nu})(I_{\nu})(DF)$ Concentration = (A_k)(RRF)(V_o)(%S) Area of the characteristic ion (EICP) for the compound to be measured Area of the characteristic ion (EICP) for the specific internal standard Amount of internal standard added, in nanograms (ng) Relative response factor of the calibration standard. RRF Volume or weight of sample pruged in milliliters (ml) or grams (g). Df Dilution factor. %S Percent solids, applicable to soils and solid matrices only.

#	Sample ID	Compound	Reported Concentration	Calculated Concentration	Qualification
	2	· * 5	0.059	0.317	
		. 1			
					·